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METHOD AND SYSTEM FOR MIMICKING
HUMAN CAMERA OPERATION

BACKGROUND

[0001] 1. Field

[0002] This disclosure provides techniques for automati-
cally capturing video. More specifically, embodiments of this
disclosure present techniques for mimicking human camera
operators in capturing a video.

[0003] 2. Description of the Related Art

[0004] Automatic broadcasting, in which autonomous
camera systems capture video, can make small events, such as
lectures and amateur sporting competitions, available to
much larger audiences. Autonomous camera systems gener-
ally need the capability to sense the environment, decide
where to point a camera (or cameras) when recording, and
ensure the cameras remain fixated on intended targets. Tra-
ditionally, autonomous camera systems follow an object-
tracking paradigm, such as “follow the lecturer,” and imple-
ment camera planning (i.e., determining where the camera
should look) by smoothing the data from the object tracking,
which tends to be noisy. Such autonomous camera systems
typically include hand-coded equations which determine
where to point each camera. One problem with such systems
is that, unlike human camera operators, hand-coded autono-
mous camera systems cannot anticipate action and frame
their shots with sufficient “lead room.” As a result, the output
videos produced by such systems tend to look robotic, par-
ticularly for dynamic activities such as sporting events.

SUMMARY

[0005] One embodiment of this disclosure provides a com-
puter implemented method for building a model to control a
first device. The method generally includes receiving, as
input, demonstration data from a human operating a second
device to perform a demonstration and environmental sen-
sory data associated with the demonstration data. The method
further includes determining device settings of the second
device, as operated by the human, from the demonstration
data, and extracting, from the sensory data, feature vectors
describing at least locations of objects in the environment. In
addition, the method includes training, based on the deter-
mined device settings and the extracted feature vectors, a
regressor which takes additional feature vectors as input and
outputs planned device settings for operating the first device,
and instructing the first device to attain the planned device
settings output by the trained regressor.

[0006] Other embodiments include, without limitation, a
computer-readable medium that includes instructions that
enable a processing unit to implement one or more aspects of
the disclosed method as well as a system configured to imple-
ment one or more aspects of the disclosed method.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] So that the manner in which the above recited fea-
tures of the present disclosure can be understood in detail, a
more particular description of the disclosure, briefly summa-
rized above, may be had by reference to embodiments, some
of which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
exemplary embodiments and are therefore not to be consid-
ered limiting of’its scope, may admit to other equally effective
embodiments.
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[0008] FIG. 1 illustrates an approach for training a system
to autonomously capture videos, according to an embodi-
ment.

[0009] FIG. 2 illustrates example features extracted from
input video, according to an embodiment.

[0010] FIG. 3 illustrates a method for capturing videos that
mimic human camera operation, according to an embodi-
ment.

[0011] FIG. 4 illustrates a system in which an embodiment
may be implemented.

[0012] To {facilitate understanding, identical reference
numerals have been used, where possible, to designate iden-
tical elements that are common to the figures. It is contem-
plated that elements and features of one embodiment may be
beneficially incorporated in other embodiments without fur-
ther recitation.

DETAILED DESCRIPTION

[0013] This disclosure provides techniques for an autono-
mous camera system to more effectively mimic a human
camera operator. In one embodiment, a supervised regression
problem is applied to formulate camera planning. More spe-
cifically, an automatic broadcasting application receives one
video input captured by a human-operated camera and
another video input captured by a stationary camera with a
wider field of view. The automatic broadcasting application
extracts feature vectors and pan-tilt-zoom states from the
stationary camera and the human-operated camera, respec-
tively. The automatic broadcasting application uses the fea-
ture vector to represent what it sees, and the feature vector
may include, e.g., a centroid, a heat map, or a spherical map
that describes player locations in the stationary camera video
input. Further, the automatic broadcasting application learns,
based on the extracted feature vectors and pan-tilt-zoom
states, a regressor. This regressor is a function that receives
the feature vectors and outputs pan-tilt-zoom settings predict-
ing what a human camera operator would choose. The auto-
matic broadcasting application may then apply the learned
regressor to determine target pan-tilt-zoom settings when
recording a scene and control an autonomous camera to
achieve the target settings. As a result, the autonomous cam-
era may record the scene in a manner that resembles the work
of'a human operator in similar situations.

[0014] Although discussed herein primarily with respect to
determining pan-tilt-zoom states from one video input cap-
tured by a human operated camera and extracting feature
vectors from another video input captured by a stationary
camera, techniques disclosed herein may be generalized to
any human demonstration input (and notjust a video captured
by a human) indicating where a camera is pointing, such as
pan and tilt values collected by electronic sensors embedded
in an “instrumented” camera tripod. Further, techniques dis-
closed herein may make use of any sensory data (and not just
video captured by a stationary camera) from sensing the
environment, such as radio frequency identification (RFID)
tracking data, scoreboard data for a game, etc. Techniques
disclosed herein may also be adapted for use with cameras
whose positions are not fixed (e.g., handheld cameras) and
devices other than cameras, such as directional microphones
and spotlights, whose operation by a human may be taken as
demonstration input that, together with environmental sen-
sory data, is used to train a regressor for generating planned
device settings predictive of human operation of the handheld
camera, directional microphone, spotlight, or other device. In
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such cases, the device settings may include pan-tilt-zoom and
position settings (for the handheld camera), pan and tilt set-
tings (for the microphone and spotlight), or any other appro-
priate settings associated with the device that may be chosen
by a human operator whose operation of the device may then
be mimicked by training a regressor. In addition, techniques
disclosed herein may be used to mimic human behavior in
general when operating a device, such as shakiness when
recording video with a handheld camera or other human
errors.

[0015] Although a basketball game is used as a reference
example herein, and panning is the primary pan-tilt-zoom
change for typical basketball game videos, techniques dis-
closed herein are also applicable to other sports and scenes
(e.g., meeting a character at a theme park). In general, tech-
niques disclosed herein do not rely on specific domain knowl-
edge, except the regressor that is learned. Further, techniques
disclosed herein may be adapted to scenes where tilting or
zooming are more important camera behaviors.

[0016] FIG. 1 illustrates an approach for training a system
to autonomously capture video, according to an embodiment.
As shown, an automatic broadcasting application receives
video inputs 110-120 from two cameras capturing the same
event, in this example, a basketball game. A first video input
110 is captured by a human-operated camera. A second video
input 120 is captured by a stationary camera with a wider field
of view, such as a camera with a higher vantage point of the
game or with different lens settings. Given the video inputs
110-120, the automatic broadcasting application extracts fea-
ture vectors 125 from the second video input 120 and exem-
plary camera pan-tilt-zoom states 115 from the first video
input 110. As discussed in greater detail below, the feature
vectors 125 may include, e.g., a centroid, heat map, or spheri-
cal map that describes player locations in the second video
input 120. In videos of basketball games, it may be assumed
that tilt and zoom are constant, as a wide shot is typically
maintained with a mostly constant tilt angle. Accordingly, the
automatic broadcasting system may determine pan angles of
the first human-operated video input 110 using, e.g., a pinhole
model technique or modified pan-tilt-zoom model, discussed
below.

[0017] Inone embodiment, camera planning may be mod-
eled as a structured regression problem

$=h(x), )

where ¥, is the planned pan-tilt-zoom state of the camera for
a particular time t, x, is a feature vector extracted from the
current tracking data, and h(") is a learned regressor (e.g., a
linear regression) 130 which takes as input the feature vector
x, and outputs the planned pan-tilt-zoom state §,. The exem-
plary camera pan angles 115 derived from the first video input
110 provide the pan-tilt-zoom states {y,} and the observed
tracking features from the second video input 120 provide
feature vectors {x,}, which together form the paired data {(y,,
x,)} used to train the regression h(-). The automatic broad-
casting application may train h(-) using various machine
learning algorithms, discussed in greater detail below.

[0018] After training the regressor h(-), the automatic
broadcasting application uses the trained regressor (again,
h(-)) to generate planned pan-tilt-zoom settings for an autono-
mous robotic camera based on feature vectors extracted from
later video captured by the stationary camera. Once gener-
ated, the automatic broadcasting application may control
motors in the autonomous robotic camera to achieve the
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planned pan-tilt-zoom settings and capture video 140. Alter-
natively, a stationary camera may be used to capture a wide
field of view (e.g., an entire basketball court), and the auto-
matic broadcasting application may sample this captured
video to generate a video that appears as if it were captured by
a camera with the planned pan-tilt-zoom settings.
[0019] FIG. 2 illustrates example features extracted from
input video, according to an embodiment. As shown, a frame
210 from a video captured by a stationary camera has a wide
field of view depicting an entire basketball court. The auto-
matic broadcasting application detects foreground elements
of'a scene (in this case the basketball players) within a video
frame by, e.g., subtracting a background (the basketball
court) and analyzing the results in terms of bounding regions
representing each foreground element (e.g, by modeling
players as a 3D cylinder). In one embodiment, to minimize
the impact of missed and false player detections, the auto-
matic broadcasting application may analyze the frame data in
frame chunks, such as ©=12 frame chunks (=0.5s), and greed-
ily fit constant velocity models to the detection data using
random sample consensus (RANSAC). In such a case, tem-
poral chunk t would contain aset T={T,, T, ... T,,} of short
constant velocity trajectories.
[0020] Inone embodiment, a fixed length feature vector x,
is extracted from each set T, of player trajectories. The player
trajectories may be noisy due to, e.g., detecting the referee or
shadows, occlusions, and the like. Three possible feature
vectors are a centroid, a heat map 230, and a spherical map
230. These and other feature vectors may be used alone or in
conjunction with one another to train a regressor. The centroid
may generally be defined as the 2-dimensional feature vector
cenmrold with the average (X, y) location of all players during
temporal chunk t. Although discussed herein primarily with
respect to player locations, the feature vector may also (or
instead) include data from other signals, such as game time,
game state data (e.g., scoreboard data), among other things.
That is, information about the event being trained for capture
by the autonomous camera system may be informed with
environmental sensory data such as the game time, game
state, etc. In addition, player locations themselves may also
be tracked using other techniques, such as RFID, and such
RFID signals could be part of the feature representation.
[0021] The automatic broadcasting application may gener-
ate a heat map, such as the heat map 230, by dividing the
basketball court into a 2D grid, counting the number of play-
ers within each cell of the grid, and assigning the counts to the
appropriate elements of feature vector x,** ™. In one
embodiment, to minimize quantization effects (i.e., errors
from trying to fit players into grid cells), the automatic broad-
casting application can linearly interpolate each player’s
count between the four neighboring cells of the grid (above,
below, left, and right). Additionally, by changing the resolu-
tion of the grid, the automatic broadcasting application may
generate heat maps at different scales. In a particular embodi-
ment, three resolutions may be used: 2x1, 4x2, and 6x3. In
such a case, the automatic broadcasting application may stack
the heat maps of the three different scales together to form a
28-dimension feature vector.
[0022] The automatic broadcasting application may gener-
ate a spherical heat map x,;#""*““ "% guch as the spherical
map 230, on the unit sphere of the camera. The spherical map
is useful for predicting a pan angle of a pan-tilt-zoom camera
in particular, where there is an inherent non-linear spherical
projection between a world coordinate system and a pan-tilt-
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zoom domain of the camera. With the spherical map, player
locations may be projected onto the unit sphere, and the
automatic broadcasting application may then count the num-
ber of players within each cell of the spherical map grid to
generate x,;P""°4 ™% Ag discussed, only pan axis is quan-
tized in this case, which assumes that tilt and zoom are con-
stant and may be suitable for capturing certain events such as
basketball in which a wide shot is maintained with a mostly
constant tilt angle. In a particular embodiment, spherical heat
maps may be generated for resolutions 1x2, 1x4, and 1x8.
Similar to the heat map discussed above, the spherical heat
map scales may be stacked to build a 14-dimension feature
vector. Unlike the heat map in the world coordinate system,
the spherical heat map is specific to a particular camera loca-
tion C, and the spherical map is effectively a polar quantiza-
tion of the player positions on the basketball court. That is, the
spherical map provides counts of the number of players in
angular regions of a unit sphere representing the camera.
[0023] FIG. 3 illustrates a method 300 for capturing video
that mimics human camera operation, according to an
embodiment. As shown, the method 300 begins at step 310,
where an automatic broadcasting application receives video
input from a stationary camera with a wide field of view and
video input from a human-operated camera.

[0024] At step 320, the automatic broadcasting application
extracts feature vectors describing at least locations of objects
(e.g., people) in the video input from the stationary camera.
As discussed, the automatic broadcasting application may
first detect players and their trajectories within video frames
by subtracting a background and analyzing the results in
terms of 3D cylinders, such as by analyzing frame chunks and
greedily fitting constant velocity models to the detection data
using RANSAC. Of course, other foreground object detection
and tracking approaches could be used. The automatic broad-
casting application then extracts a feature vector X, from each
set of noisy player trajectories. As noted relative to FIG. 2,
examples of feature vectors may include a centroid, a heat
map, and a spherical map. In an alternative embodiment, the
feature vector could include other data, such as game time,
game state (e.g., number of points scored), etc. (again, using
domain knowledge can inform the modeling of the automatic
camera planning, but is not required to mimic human camera
operator).

[0025] At step 330, the automatic broadcasting application
determines camera pan-tilt-zoom states y, of the human-op-
erated camera video. In one embodiment, the pan-tilt-zoom
states y, may be simplified to just pan angles. As discussed,
only considering pan angles may be sufficient for generating
a model for an autonomous camera to record some events
such as basketball games in which a wide shot zoom is main-
tained along with a generally constant tilt angle. The pinhole
model is frequently used to describe the projective aspects of
a camera, and the automatic broadcasting application may
determine camera pan angles using the pinhole model in one
embodiment.

[0026] Inanother embodiment, the automatic broadcasting
application may use a revised pan-tilt-zoom model that
improves upon the pinhole model. The standard pinhole
model has form

P=KR[1|-C], ()]
where K is the intrinsic matrix, R is a rotation matrix from the

world coordinate system to the camera coordinate system,
and C is the camera’s center of projection. Assuming square
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pixels, the intrinsic matrix intrinsic matrix K is defined by the
focal length f of the camera and principle point (u,, v,):

0 u ©)
K=[0 f v |
00 1

By fixing (u,, v,) to the center of the video frame, the intrinsic
matrix only has one degree of freedom. Generally, a pan-tilt-
zoom camera has two separate components: a camera and a
robotic head. The rotation matrix R changes as the robotic
head moves. Thus, the rotation matrix R may be factored into
two rotation matrices Q and S:

R=QS. @

The rotation matrix S represents the rotation from the world
coordinate system to the pan-tilt motor coordinate system and
remains constant regardless of the actual pan-tilt settings. The
rotation matrix may be modeled using the Rodrigues notation
S=[s,. 5,, 5.] 7. The matrix Q represents the 3D rotation for a
specific pan-tilt (0, ¢) setting

Q=040 ®
where

1 0 0 (6)
Qs =|0 cosp sing

0 —sing cos¢p
and

cosf O —sind (7
Q= 0 1 0

sinf 0 cosf

Most pan-tilt-zoom models assume the rotation center is the
same as the projection center. However, this is only an
approximation, as some cameras do not obey this assumption.
For example, a camera may be mounted on a tripod and rotate
around the tripod head. In such a case, the projection center
(near the camera’s lens) may be far from the rotation center
(the tripod head). To account for this displacement, one
embodiment may employ a modified pan-tilt-zoom model:

_[R 0! -D (8)
P=KC .
[0 1”0 1}

Here, D is the center of rotation, and C is the translation from
the center of rotation to the center of projection

100 & ©
c=[010¢]|
001 &

The center of projection changes significantly whenever the
camera zooms in or out. As aresult, the displacement between
the center of rotation and the center of projection may be
modeled as a linear function of £:
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In the modified pan-tilt-zoom model, there are twelve time
invariant parameters ®=[D,,D,, D,,s,,5,,8,, A, . .., 7»6]T and
three per-frame parameters [0, ¢, f]°. Constrained by the
common parameters @, the model can estimate pan, tilt, and
focal length from at least two correspondences. Here, a cor-
respondence refers to the same thing (e.g., a specific location
on the basketball court such as a corner of the court) being
identified in two images, as discussed in greater detail below.
[0027] To estimate the parameters of the modified pant-tilt-
zoom camera model, the automatic broadcasting application
may first independently estimate a calibration matrix P; of
each video frame j using the standard pinhole model. There-
after, the automatic broadcasting application could employ a
Levenberg-Marquardt optimization to estimate the time
invariant parameters @ of the modified pan-tilt-zoom model
with the consistent center of rotation and per-frame pan-tilt-
zoom settings by minimizing the projection error of key
points as follows:

arg min Z,{|m,~1f1,2 1)

[0028] Here, m, is the observed image location of known
3D point M, (e.g., corners of basketball court markings), and
1, is the projection of M, by P(®, 0,, ¢,, ). That is, the
automatic broadcasting application is essentially attempting
to match known points, such as corners of the basketball
court, with points in the human-operated camera video.
Extracting a sufficient number of point correspondences per-
mits the automatic broadcasting application to obtain a good
estimate of the unknown camera parameters. To do so, the
automatic broadcasting application may locate key points in
the input video frame by searching for matching key points
from a set of manually calibrated keyframes. In one embodi-
ment, to perform such a matching, the automatic broadcasting
application employs two homographies:

m, ,=HH, M, 12)

where M, is the 3D position of the key point, H, is the homog-
raphy mapping M, to amanually calibrated keyframek, m, , is
the corresponding key point in the input video frame, and H is
the homography between keyframe k and the input video
frame. The automatic broadcasting application may use
scale-invariant feature transform (SIFT) matching between
the keyframe and input video frame to estimate H. To filter out
noisy correspondences, the automatic broadcasting applica-
tion may synthesize an overhead view image (of, e.g., the
basketball court) by combining multiple calibrated frames.
Here, a noisy correspondence refers to a correspondence hav-
ing an inconsistent mapping. For example, it may be assumed
that points on the basketball court are being detected, and
such points remain stationary. If a point on a player is instead
detected, then the player’s movements may make the corre-
spondence inaccurate. Some frames may also be manually
calibrated using, e.g., point-less calibration to obtain accurate
camera parameters, and the frames may be selected to cover
roughly the desired camera field of view (e.g., the entire
basketball court) so that the automatic broadcasting applica-
tion can find sufficient matches of input video frames to at
least one of the calibrated frames (e.g., to a particular cali-
brated frame that shows one side of the basketball court).
Finally, the automatic broadcasting application may warp the
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overhead image to the vantage point of each keyframe using
the homography matrix H,. As the warped overhead image
tends to not have clutter (e.g., players), matches to an input
video frame may be relatively accurate. The automatic broad-
casting application may then greedily select the keyframe
with the minimum sum of squared differences (SSD) between
the warped overhead image and the input image. For a long
video sequence, the automatic broadcasting application may
also linearly interpolate [0, ¢, 17 frames where calibration
fails (typically because of motion blur when the camera is
moving quickly). In an alternative embodiment, an “instru-
mented” tripod may be used, and the instrumented tripod may
provide actual pan/tilt values collected by electronic sensors
embedded in the tripod itself.

[0029] At step 340, the automatic broadcasting application
learns a regressor h(-) for predicting pan-tilt-zoom settings for
new situations {x,} to record using a camera. A variety of
learning techniques may be applied, such as linear least
squares regression, support vector regressor (SVR), and ran-
dom forest regression (RF). Experience has shown that, a
least squares regression tends to perform well, in terms of root
mean square (RMS) error, for low-dimensional feature vec-
tors (e.g., the centroid feature) when learning the regressor.
For high-dimensional features (e.g., heat maps and spherical
map), SVR and RF tend to achieve lower RMS error. In both
cases, RF tends to achieve similar or better performance
relative to SVR. In terms of the cumulative fraction of test
data where prediction error is less than a specified threshold,
experience has shown that RF using spherical maps tends to
achieve effective results, but RF using heat maps and SVR
using spherical maps produce results of nearly the same qual-
ity.

[0030] Each ofthe linear least square regression, SVR, and
RF may sometimes lead to large discrepancies (e.g., >10° pan
angle difference) between the predicted pan-tilt-zoom states
{9,} and the camera pan-tilt-zoom states {,} of the video
captured by the human operator. Several factors may lead to
inaccurate predictions, including errors in detecting and
tracking players. In addition, considering the human opera-
tor’s actions as an optimal camera behavior results in two
implicit assumptions: (1) there is a single optimal pan angle
y,* for a particular situation x,, and (2) the human operator
never makes a mistake, i.e., y ~y,*. However, neither of these
assumptions is always true.

[0031] As to the assumption that there is a single optimal
pan angle in particular, video frames with similar features
X ,~X, may represent, e.g., players running in different direc-
tions, which require different pan angles y =y,. As a result,
h(x,) may not strictly be a single valued function and some
formations of players may have multiple possible correct pan
angles, i.e., h(x)—={y, v, ¥, ... }. Of course, a variety of
other events captured by an autonomous video recorder may
have similar occurrences. To remedy the problem of multiple
possible pan angles, the automatic broadcasting application
may use a feature vector which describes features at two or
more points in time (e.g., now and one second ago), such as
the heat map and spherical map generated from player trajec-
tories, discussed above. Doing so allows the automatic broad-
casting application to differentiate between situations where
players are moving in one direction from when the players are
moving in another direction.

[0032] Various training algorithms may be evaluated to
determine which algorithm is best using re-cinematography,
in which the automatic broadcasting application generates
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new video by resampling previously recorded video. For
example, the automatic broadcasting application may set the
pan angle to the predicted value ¥, when resampling the pre-
viously recorded video. Since the prediction ¥, is generally
different from the ground truth y,, the resampled video will
have missing pixels where a resampled frame goes beyond the
bounds of the original video. In one embodiment, the auto-
matic broadcasting application determines the magnitude of
such missing pixels in order to gauge how well the trained
regressor mimicks the human operator. Given this informa-
tion, the automatic broadcasting application may select
which training algorithm to actually use as the one that gen-
erates a trained repressor which most closely models the
human operator.

[0033] At step 350, the automatic broadcasting application
generates planned pan-tilt-zoom setting for anew video using
the learned regressor h(-). That is, given a video feed (e.g.,
from a camera with a wide field of view) capturing an event
after the regressor is trained, the automatic broadcasting
application extracts, for each frame of the video, a feature
vector X, using the same feature extraction algorithm
employed during training (e.g., the centroid, heat map, or
spherical map). The automatic broadcasting application then
inputs these features into the learned regressor h(-), which
outputs planned pan-tilt-zoom setting y, for the new video
corresponding to the regressor’s prediction of the pan-tilt-
zoom configuration that would be chosen by a human camera
operator given the feature vector x,.

[0034] At step 360, the automatic broadcasting application
optionally smoothes the pant-tilt-zoom settings generated at
step 350. Smooth motion can be important to achieve aes-
thetic camera work. In one embodiment, the automatic broad-
casting application may use a first-order Savitzky-Golay filter
of, e.g., 33 frames (0.5s) to smooth predicted pan angles.
Experience has shown such smoothing can reduce the predic-
tion error (i.e., the error between the regressor’s output and
the human-operated training data).

[0035] At step 370, the automatic broadcasting application
controls an autonomous robotic camera to achieve the
smoothed planned pan-tilt-zoom settings obtained at steps
360-370. Doing so may include, e.g., executing a separate
algorithm which determines signals that need to be sent to the
autonomous robotic camera to control servo motors to
achieve the desired pan-tilt-zoom settings. Such an algorithm
may be, e.g., a target following algorithm that tracks the
planned pan-tilt-zoom settings. Alternatively, a stationary
camera may simply capture a wide field of view (e.g., an
entire basketball court), and the automatic broadcasting
application may sample this captured video to generate a
video that appears as if it were captured by a camera with the
smoothed planned pan-tilt-zoom settings.

[0036] FIG. 4 depicts a block diagram of a system 400 in
which an embodiment may be implemented. As shown, the
system 400 includes, without limitation, a central processing
unit (CPU) 410, a network interface 430, an interconnect 415,
a memory 460 and storage 420. The system 400 may also
include an [/O device interface 440 connecting [/O devices
450 (e.g., keyboard, display and mouse devices) to the system
400. Mustratively, two cameras 441-442 are connected to the
system 400 via the /O device interface 440. In one embodi-
ment, the camera 441 may be operated by a human to capture
a video 421 of an environment. The camera 442 may be a
stationary camera with a wide field of view that captures a
second video 422 of the environment. In turn, feature vectors
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and pan-tilt-zoom states may be determined from the station-
ary camera video 422 and the human-operated camera video
421, respectively, and thereafter used to train a regressor to
predict camera setting the human operator would choose.
Such predictions output by the trained regressor may further
be employed to control the camera 441 or a similar camera to
automatically capture video, or alternatively to sample video
captured with the stationary camera 442, according to the
predictions.

[0037] The CPU 410 retrieves and executes programming
instructions stored in the memory 460. Similarly, the CPU
410 stores and retrieves application data residing in the
memory 460. The interconnect 415 facilitates transmission,
such as of programming instructions and application data,
between the CPU 410, I/O device interface 440, storage 420,
network interface 430, and memory 460. CPU 410 is included
to be representative of a single CPU, multiple CPUs, a single
CPU having multiple processing cores, and the like. And the
memory 460 is generally included to be representative of a
random access memory. The storage 420 may be a disk drive
storage device. Although shown as a single unit, the storage
420 may be a combination of fixed or removable storage
devices, such as fixed disc drives, floppy disc drives, tape
drives, removable memory cards or optical storage, network
attached storage (NAS), or a storage area-network (SAN).
Further, system 400 is included to be representative of a
physical computing system as well as virtual machine
instances hosted on a set of underlying physical computing
systems. Further still, although shown as a single computing
system, one of ordinary skill in the art will recognized that the
components of the system 400 shown in FIG. 4 may be
distributed across multiple computing systems connected by
a data communications network.

[0038] As shown, the memory 460 includes an operating
system 461 and an automatic broadcasting application 462.
Tlustratively, the operating system may include Microsoft’s
Windows®. The automatic broadcasting application 462
learns and applies a regressor which takes as input a feature
vector and outputs pan-tilt-zoom settings predictive of what a
human operator would do. In one embodiment, the automatic
broadcasting application 462 may be configured to receive
video input from the stationary camera 442 with a wide field
of view and from the human-operated camera 441, extract
feature vectors describing at least locations of objects in the
video 422 input from the stationary camera 442, determine
camera pan-tilt-zoom states of the human-operated camera
video 421, learn a regressor for predicting pan-tilt-zoom set-
tings for new situations that may be captured on video, gen-
erate planned pan-tilt-zoom setting using the learned regres-
sor, smooth the generated pant-tilt-zoom settings, and cause
anautonomous robotic camera (which may be the camera 441
or a similar camera) to achieve the smoothed planned pan-
tilt-zoom settings, according to the method 300 discussed
above with respect to FIG. 3.

[0039] Advantageously, techniques disclosed herein pro-
vide a data-driven approach for predicting the pan-tilt-zoom
settings of a camera. The camera planning is posed as a
supervised regression problem, which allows the learned
regressor to anticipate action as a human operator would. As
a result, techniques disclosed herein permit realtime predic-
tion and camera control for autonomously recording videos
which closely resemble the work of a human operator in
similar situations.
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[0040] The preceding description references aspects of the
disclosure. However, it should be understood that the disclo-
sure is not limited to specific described aspects. Instead, any
combination of the preceding features and elements, whether
related to different aspects or not, is contemplated to imple-
ment and practice the disclosure. Furthermore, although
aspects of the disclosure may achieve advantages over other
possible solutions or over the prior art, whether or not a
particular advantage is achieved by a given aspect is not
limiting of the disclosure. Thus, the preceding aspects, fea-
tures, and advantages are merely illustrative and are not con-
sidered elements or limitations of the appended claims except
where explicitly recited in a claim(s). Likewise, reference to
“the disclosure” shall not be construed as a generalization of
any inventive subject matter disclosed herein and shall not be
considered to be an element or limitation of the appended
claims except where explicitly recited in a claim(s).

[0041] Aspects of the present disclosure may be embodied
as a system, method or computer program product. Accord-
ingly, aspects of the present disclosure may take the form of
an entirely hardware aspect, an entirely software aspect (in-
cluding firmware, resident software, micro-code, etc.) or an
aspect combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present disclosure may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

[0042] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus or
device.

[0043] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality and operation of pos-
sible implementations of systems, methods and computer
program products according to various aspects of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). In some
alternative implementations the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. Each block of the block diagrams or flowchart
illustrations, and combinations of blocks in the block dia-
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grams or flowchart illustrations can be implemented by spe-
cial-purpose hardware-based systems that perform the speci-
fied functions or acts, or combinations of special purpose
hardware and computer instructions.

[0044] While the foregoing is directed to aspects of the
present disclosure, other and further aspects of the disclosure
may be devised without departing from the basic scope
thereof, and the scope thereof is determined by the claims that
follow.

What is claimed is:

1. A method for building a model to control a first device,
comprising:

receiving, as input, demonstration data from a human oper-

ating a second device to perform a demonstration and
environmental sensory data associated with the demon-
stration data;
determining device settings of the second device, as oper-
ated by the human, from the demonstration data;

extracting, from the sensory data, feature vectors describ-
ing at least locations of objects in the environment;

training, based on the determined device settings and the
extracted feature vectors, a regressor which takes addi-
tional feature vectors as input and outputs planned
device settings for operating the first device; and

instructing the first device to attain the planned device
settings output by the trained regressor.

2. The method of claim 1, further comprising:

receiving additional environmental sensory data; and

extracting, from the additional environmental sensory

data, the additional feature vectors describing at least
locations of objects.

3. The method of claim 1, wherein the first device is an
autonomous camera, and wherein attaining the planned
device settings includes capturing video by controlling the
autonomous camera to achieve planned pan-tilt-zoom set-
tings output by the trained regressor.

4. The method of claim 1, wherein the first device includes
one or more stationary cameras, and wherein attaining the
planned device settings includes capturing videos with the
one or more stationary cameras and sampling the videos
captured with the one or more stationary cameras based on the
planned device settings output by the trained regressor.

5. The method of claim 1, further comprising, smoothing
the planned device settings output by the trained regressor
prior to instructing the first device.

6. The method of claim 1, wherein the feature vectors
include one or more spherical maps, the spherical maps being
generated by projecting object locations onto a unit sphere.

7. The method of claim 1, wherein the second device is a
camera, wherein the demonstration data includes a first video
captured by the camera under control of the human operator,
and wherein the device settings are pan-tilt-zoom settings of
the camera associated with the first video.

8. The method of claim 7, wherein the sensory data
includes a second video of the environment captured by a
stationary camera and having a wider field of view than the
first video.

9. The method of claim 7, wherein determining the settings
includes:

estimating a calibration matrix of each frame of the first

video using the pinhole model; and

applying Levenberg-Marquardt optimization to estimate

time invariant parameters of a modified pinhole model
with a restricted distance between rotation and projec-
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tion centers and to estimate per-frame pan-tilt-zoom
settings by minimizing projection error of predefined
key points.

10. The method of claim 1, wherein the first device and the
second device are the same device.

11. A non-transitory computer-readable storage medium
storing a program, which, when executed by a processor
performs operations for building a model to control a first
device, the operations comprising:

receiving, as input, demonstration data from a human oper-

ating a second device to perform a demonstration and
environmental sensory data associated with the demon-
stration data;
determining device settings of the second device, as oper-
ated by the human, from the demonstration data;

extracting, from the sensory data, feature vectors describ-
ing at least locations of objects in the environment;

training, based on the determined device settings and the
extracted feature vectors, a regressor which takes addi-
tional feature vectors as input and outputs planned
device settings for operating the first device; and

instructing the first device to attain the planned device
settings output by the trained regressor.

12. The computer-readable storage medium of claim 11,
the operations further comprising:

receiving additional environmental sensory data; and

extracting, from the additional environmental sensory

data, the additional feature vectors describing at least
locations of objects.

13. The computer-readable storage medium of claim 11,
wherein the first device is an autonomous camera, and
wherein attaining the planned device settings includes cap-
turing video by controlling the autonomous camera to achieve
planned pan-tilt-zoom settings output by the trained regres-
sor.

14. The computer-readable storage medium of claim 11,
wherein the first device includes one or more stationary cam-
eras, and wherein attaining the planned device settings
includes capturing videos with the one or more stationary
cameras and sampling the videos captured with the one or
more stationary cameras based on the planned device settings
output by the trained regressor.

15. The computer-readable storage medium of claim 11,
the operations further comprising, smoothing the planned
device settings output by the trained regressor prior to
instructing the first device.
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16. The computer-readable storage medium of claim 11,
wherein the feature vectors include one or more spherical
maps, the spherical maps being generated by projecting
object locations onto a unit sphere.

17. The computer-readable storage medium of claim 11,
wherein the second device is a camera, wherein the demon-
stration data includes a first video captured by the camera
under control of the human operator, and wherein the device
settings are pan-tilt-zoom settings of the camera associated
with the first video.

18. The computer-readable storage medium of claim 17,
wherein the sensory data includes a second video of the
environment captured by a stationary camera and having a
wider field of view than the first video.

19. The computer-readable storage medium of claim 11,
wherein the first device and the second device are the same
device.

20. A system, comprising:

a first data capture device;

a second data capture device;

a processor; and

a memory, wherein the memory includes an application

program configured to perform operations for building a

model to control the first data capture device, the opera-

tions comprising:

receiving, as input, demonstration data from a human
operating the second data capture device to perform a
demonstration and environmental sensory data asso-
ciated with the demonstration data;

determining device settings of the second data capture
device, as operated by the human, from the demon-
stration data;

extracting, from the sensory data, feature vectors
describing at least locations of objects in the environ-
ment;

training, based on the determined device settings and the
extracted feature vectors, a regressor which takes
additional feature vectors as input and outputs
planned device settings for operating the first data
capture device; and

instructing the first data capture device to attain the
planned device settings output by the trained regres-
SOf.



