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(57) ABSTRACT

A computer-implemented method includes recording one or
more demonstrations of a task performed by a user. Move-
ments of one or more joints of the user are determined from
the one or more demonstrations. By a computer processor,
a neural network or Gaussian mixture model incorporating
one or more contraction analysis constraints is learned,
based on the movements of the one or more joints of the
user, the one or more contraction analysis constraints rep-
resenting motion characteristics of the task. A first initial

Int. CL position of a robot is determined. A first trajectory of the
B25J 9/16 (2006.01) robot is determined to perform the task, based at least in part
GO6N 3/04 (2006.01) on the neural network or Gaussian mixture model and the
GO6N 3/08 (2006.01) first initial position.
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SKILL TRANSFER FROM A PERSON TO A
ROBOT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority to U.S.
Provisional Application No. 62/366,659, filed on Jul. 26,
2016, the contents of which are incorporated by reference
herein in their entirety.

BACKGROUND

[0002] Embodiments relate to robotics and, more specifi-
cally, to skill transfer from a person to a robot.

[0003] Learning from demonstration is an important prob-
lem in the context of training robots using non-expert
operators, i.e., operators who are not equipped to reprogram
the robots. For instance, to teach a task to a robot, the robot
can be given the ability to learn motion from demonstrations
of the task performed by a user. Thus, the user, despite being
a non-expert operator, can teach the task to the robot by
demonstrating the task. This technique may enable robots to
perform, for example, in manufacturing contexts or as
assistants to the elderly.

SUMMARY

[0004] According to an embodiment of this disclosure, a
computer-implemented method includes recording one or
more demonstrations of a task performed by a user. Move-
ments of one or more joints of the user are determined from
the one or more demonstrations. A neural network or Gauss-
ian mixture model incorporating one or more contraction
analysis constraints is learned by a computer processor
based on the movements of the one or more joints of the
user. The one or more contraction analysis constraints rep-
resent motion characteristics of the task. A first initial
position of a robot is determined. A first trajectory of the
robot to perform the task is determined based, at least in part,
on the neural network or Gaussian mixture model and the
first initial position.

[0005] In another embodiment, a system includes a
memory having computer readable instructions and one or
more processors for executing the computer readable
instructions. The computer readable instructions include
recording one or more demonstrations of a task performed
by a user. Further according to the computer readable
instructions, movements of one or more joints of the user are
determined from the one or more demonstrations. A neural
network or Gaussian mixture model incorporating one or
more contraction analysis constraints is learned, based on
the movements of the one or more joints of the user. The one
or more contraction analysis constraints represent motion
characteristics of the task. A first initial position of a robot
is determined. A first trajectory of the robot to perform the
task is determined based, at least in part, on the neural
network or Gaussian mixture model and the first initial
position.

[0006] In yet another embodiment, a computer program
product for transferring a skill to a robot includes a computer
readable storage medium having program instructions
embodied therewith. The program instructions are execut-
able by a processor to cause the processor to perform a
method. The method includes recording one or more dem-
onstrations of a task performed by a user. Further according
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to the method, movements of one or more joints of the user
are determined from the one or more demonstrations. A
neural network or Gaussian mixture model incorporating
one or more contraction analysis constraints is learned,
based on the movements of the one or more joints of the
user. The one or more contraction analysis constraints rep-
resent motion characteristics of the task. A first initial
position of a robot is determined. A first trajectory of the
robot to perform the task is determined based, at least in part,
on the neural network or Gaussian mixture model and the
first initial position.

[0007] Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed
invention. For a better understanding of the invention with
the advantages and the features, refer to the description and
to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The subject matter regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The foregoing and
other features and advantages of the invention are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

[0009] FIG. 1 is a block diagram of a learning system used
to control a robot, by learning a skill through one or more
user demonstrations of a task, according to one or more
embodiments of this disclosure;

[0010] FIG. 2 is a flow diagram of a method for learning
semi-contracting or partially contracting nonlinear dynamics
from the one or more demonstrations for the purpose of
robot motion planning, according to one or more embodi-
ments of this disclosure;

[0011] FIG. 3 is a flow diagram of a method for causing a
robot to perform the task, according to one or more embodi-
ments of this disclosure; and

[0012] FIG. 4 is a block diagram of a computer system for
implementing some or all aspects of the learning system,
according to one or more embodiments of this disclosure.

DETAILED DESCRIPTION

[0013] Some embodiments of this disclosure are learning
systems that are based on a method of contracting dynamic
system primitive (CDSP). Using CDSP, the learning system
may learn motion dynamics, specifically a complex human
motion dynamic model, using a neural network (NN) or a
Gaussian mixture model (GMM) subject to motion trajec-
tory constraints of a task, such as a reaching task. According
to some embodiments, a human arm’s reaching motion is
modeled using a dynamic system (DS) x=f(x), where f(x) is
represented using a NN or GMM that is learned based on
one or more demonstrations of the task by a human user.
[0014] In some embodiments, the problem of learning
motion dynamics is formulated as a parameter learning
problem of a NN or GMM under stability constraints given
by contraction analysis of nonlinear systems. The contrac-
tion analysis may yield global exponential stability, in the
form of a globally semi-contracting or partially contracting
function, of the nonlinear systems.

[0015] There may be various benefits to learning a glob-
ally semi-contracting or partially contracting function in this
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context. For instance, motion trajectories may converge to a
goal location from various initial conditions. Thus, regard-
less of the initial conditions when a robot performs a task,
the robot may reach the desired goal location. A further
benefit may be that, with the addition of an obstacle avoid-
ance feature, trajectories generated for the robot may still
converge to the goal location in the existence of obstacles.
[0016] FIG.1 is a block diagram of a learning system 100
used to control a robot 110, by learning a skill through one
or more user demonstrations, according to one or more
embodiments of this disclosure. As shown, the learning
system 100 may include a preprocessing unit 120, a training
unit 130, a trajectory generation unit 140, and a motion
planning unit 150. Generally, the preprocessing unit 120
may observe one or more demonstrations of a task per-
formed by a user and may perform preprocessing tasks, such
as obtaining position, velocity, and acceleration of the
human’s movements in performing the task; the training unit
130 may define parameters of the NN or GMM and may
obtain weights for the NN or GMM; the trajectory genera-
tion unit 140 may observe a state of the robot and generate
a trajectory enabling the robot to perform the task, based on
the NN or GMM; and the motion planning unit 150 may
apply the trajectory to the robot 110, thus causing the robot
110 to perform the task. The preprocessing unit 120, training
unit 130, trajectory generation unit 140, and motion plan-
ning unit 150 may include hardware, software, or a combi-
nation of both. Further, although these units are illustrated as
separate in FIG. 1, one of skill in the art will understand that
they may share hardware, software, or both.

[0017] In some embodiments, as will be described further
below, the learning system 100 may formulate an optimi-
zation problem, which may be used to compute weights of
the NN or GMM subject to one or more contraction condi-
tions of underlying dynamics. One or more contraction
constraints may yield a state-dependent matrix inequality
condition (i.e., a contraction inequality constraint), which
may be nonconvex in the weights of the NN or GMM. In the
case of a NN, the contraction inequality constraint may be
reformulated as linear inequality conditions (i.e., linear
inequality constraints) by assuming that a contraction metric
is a constant and the number of neurons in a hidden layer of
the NN is equal to the number of inputs. In the case of a
GMM, the contraction inequality constraint may be refor-
mulated as a polynomial matrix inequality constraint by
assuming that the elements of a contraction metric are
polynomial functions in the state.

[0018] Further, in some embodiments, the learning system
100 may use sequential quadratic programming (SQP), in a
novel learning algorithm, subject to the relaxed contraction
constraints. The learning system 100 may select good initial
conditions for the constrained SQP based on the solutions
obtained by solving an unconstrained optimization problem
first.

[0019] In some embodiments, as will also be described
further below, the CDSP method may be enhanced with an
obstacle avoidance strategy by using a gradient of a repul-
sive potential function. Because the semi-contracting or
partially contracting trajectories being modeled are globally
converging to a goal location (i.e., the location of an object
being reached for), the addition of local repulsive potential
need not change attractor behavior at the goal location.
[0020] Further, because the demonstrations are not
directly performed by moving the robot arm, some robots
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may not be able to follow the parts of trajectories generated
by the learned dynamics. To circumvent this problem, a
low-level motion planning algorithm or inverse kinematics
may be used for implementation of the trajectories generated
by the learned model on a specific robot platform.

[0021] In some embodiments, CDSP is robust to abrupt
changes in trajectories that may appear due to disturbances,
such as sensor failures or malfunctioning of the robot 110.
The learned motion model may recreate paths that converge
to the goal locations in spite of such disturbances. Another
other advantage of CDSP, in some embodiments, is that the
trajectories may be learned based on a single demonstration,
although learning paths based on multiple demonstrations
can be beneficial, especially in the case of a bad single
demonstration.

[0022] FIG. 2 is a flow diagram of a method 200 of
learning semi-contracting or partially contracting nonlinear
dynamics from one or more demonstrations for the purpose
of robot motion planning, according to one or more embodi-
ments of this disclosure.

[0023] As shown, at block 210, the learning system 100
may observe one or more demonstrations of a user perform-
ing a task. For example, and not by way of limitation, the
task may be a reaching task, such as for loading or unloading
a dishwasher, placing food in a microwave, opening a door,
or picking up something. In some embodiments, this may
include recording joint positions of the user, which may be
done with a three-dimensional (3D) video camera such as
Microsoft® Kinect® for Windows®. At block 220, the
learning system 100 may obtain training data describing the
user’s movements when performing the demonstrations. For
example, and not by way of limitations, this training data
may include estimates of position, velocity, and acceleration
of'the user’s hand, joints, or other body part. In other words,
the learning system 100 may determine positions and move-
ments of the user based on the demonstrations. In some
embodiments, the estimates may be obtained by computing
them through application of a local Kalman filter to the joint
positions of the user.

[0024] For encoding motions of the demonstrations, there
may exist a state variable x(D)=[p(t)", v(t)"]“eR 2, where
p(eR “is the position and v(t)eR “is the velocity of a point
in d dimensions at time t. Let a set of N demonstrations
{D,},_,"Y be a set of solutions to the dynamic model k(t)=f
(x(t)), where f: R2?—R 9 is a nonlinear, continuously dif-
ferentiable, autonomous function. Each demonstration may
correspond to a reaching motion ending at x*=[g”, 0,, %,
where geR ¥ is the goal location. Each demonstration may
be associated with a set of trajectories of the states {x(t)
1,77 and a set of trajectories of the state derivatives
1%}, from time t=0 to t=T.

[0025] In the case of point-to-point reaching motions, the
trajectories of a human hand can start from various initial
locations and end at the goal location. Additionally, in some
embodiments, the velocity and acceleration is zero at the
goal location.

[0026] In some embodiments, the preprocessing unit 120
may perform blocks 210-220 of the method 200.

[0027] At block 230, the learning system 100 may define
parameters of a NN or GMM to be used as a model. These
parameters may define a structure for the NN or GMM and
may include, for example, the number of neurons in the
hidden layer of the NN or a number of Gaussians in the
GMM. The parameters may vary based on implementation
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and may be a design choice. For instance, as the number of
neurons in the hidden layer increases, the learning system
100 may take longer to compute trajectories for the robot
110, but the trajectories may be more precise and may thus
result in improved performance of the task by the robot 110.
[0028] At block 240, the learning system 100 may com-
pute weights for initializing the NN or GMM without
constraints, based at least in part on the training data.
[0029] As discussed above, the learning system 100 may
utilize contraction analysis to analyze exponential stability
of nonlinear systems. A non-linear, non-autonomous system
may have the form x=f(x,t) (hereinafter “Formula 1”°), where
x(t)eR” is a state vector, and f: R =R ” is a continuously
differentiable nonlinear function. In this case, the relation

afx, 1)

Sx =
* ax

Ox holds, where 0x is an infinitesimal virtual displacement
in fixed time. The squared virtual displacement between two
trajectories of Formula 1 in a symmetric, uniformly positive
definite metric M(x,t)eR ™" may be given by dx“M(x,1)dx,
and its time derivative may be given by

T
%(&CTM(X, Nx) = ox (LM(X 0+ Mx, D+ Mx, t)—f)

[0030] If the inequality

T
LM(x D+ M D+ M(x, z)—f <oV,

Vx is satisfied, then the system of Formula 1 may be deemed
to be semi-contracting. Further, the trajectory of Formula 1
may converge to a single trajectory regardless of initial
conditions.

[0031] If the inequality

af” af
—M(x 0+ M, D+ M, l‘)— <-2yM(x,0, VY1,

Vx is satisfied for a strictly positive constant vy, then the
system of Formula 1 may be deemed to be contracting with
the rate y. Further, the trajectory of Formula 1 may converge
to a single trajectory regardless of initial conditions.
[0032] For an auxiliary system of the form y=f(y,x,t)
(hereinafter “Formula 2”), where y(t)eR” is an auxiliary
variable, if the inequality

af” af
—M(y D+ My, D+ M(y, l‘)— <-2yM(y, 0, V1,

[0033] Vv is satisfied for a strictly positive constant y, then
the auxiliary system of Formula 2 may be deemed to be
contracting and the system of Formula 1 may be deemed to
be partially contracting. Further, if any particular solution of
the auxiliary system of Formula 2 verifies a smooth specific
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property, then all the trajectories of the system of Formula
1 verify this specific property exponentially.

[0034] In some embodiments, a set of N demonstrations
{D,},_,” performed by the user are solutions to an underly-
ing dynamic model governed by the first-order differential
equation x(t)=f(x(t)) (hereinafter “Formula 3”), where the
state variable xeR 7, and f: R =R ” is a nonlinear continu-
ous and continuously differentiable function.

[0035] Each demonstration may include trajectories of the
states {x(t)},_,”7 and trajectories of the state derivatives
1%}, from time =0 to =T. Because the state trajec-
tories of the demonstrations of a specific stable DS may
exponentially converge to a single trajectory or a single
point (i.e., the goal location), the system defined in Formula
3 may be considered a globally contracting system.

[0036] In some embodiments of the learning system 100,
the nonlinear function f is modeled using a NN given by
f(x(1))=W o(Us(t)+e(s(1)) (heremafter “Formula 47). In
Formula 4, s(t)=[x(t)%, 1]°eR "*! is an input vector to the
NN;

a(UTs() =
1 1 1 T
L+exp((=UTs@);)” " 1+exp((-UTs(@),)" "~

1+ exp((—UTs(t))nh)

[0037] is a vector-sigmoid activation function, and (U”s
(1), is the i” element of the vector (U7s(t),UeR @12 the
elements of WeR ™" are bounded constant-weight matri-
ces; e(s(t))eR ” is a function reconstruction error that goes to
zero after the NN is fully trained; and n,, is the number of
neurons in the hidden layer of the NN.

[0038] In some embodiments of the learning system 100,
the nonlinear function f is modeled using a GMM given by
f(x(0)=2h, (x(1))(Ax(t)+b,)+e(x(t)) (hereinafter “Formula
5”). In Formula 5,

pk)px| k)

) = P

is the scalar weight associated with the kth Gaussian such
that 2 h,(x())=1 and O<h,(x(t))=<1, p(k) is the prior prob-
ability, and

_ T
A =Zp, i) Ly = e, — Akblics Mic = [ﬂ[xs ﬂlz;] and
s e Tk,
L=
L, I

are the mean and covariance of the kth Gaussian, respec-
tively.

[0039] Given the one or more demonstrations, the learning
system 100 may learn the function f, which is modeled using
a NN or GMM under contraction conditions. This may
enable the learning system 100 to generate converging
trajectories, governed by a stable DS and starting from a
given arbitrary initial condition. As a result, the learning
system 100 may cause the robot 110 to execute such a
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trajectory, by performing the task demonstrated in the one or
more demonstrations, given arbitrary initial conditions.
[0040] In some embodiments, the constrained optimiza-
tion problem to be solved by the learning system 100 to train
the semi-contracting NN may be {W,U}=argmin,  {aF+
BE,} (hereinafter “Formula 6), such that

M>0 (hereinafter “Formula 7”). In Formula 6 and Formula
7,Ep=2,_,"v,~a,)"[y,~a,] may be the sum of squared errors;
a,R” and y,eR " may respectively represent the end loca-
tion and the NN’s output corresponding to the ith demon-
stration; E;, may be the sum of the squares of the NN
weights; a and § may be parameters of regularization; and
MeR " may represent a constant positive symmetric
matrix. The learning system may compute the Jacobian

af af Fa(UTs)
ax as ﬂ dx

=wTzwisur.

In the above, for any beR ™, 2'(b)e R " may be a diagonal
matrix given by Z'(b)=diag(o(b,)(1-o(b,)), o(b,)(1-0(b,)),

, o(b,)(1-0(b,,))) (hereinafter “Formula 8”); and Uye
R <y may be a sub-matrix of U formed by taking the first
n rows of U.

[0041] In some embodiments, the constrained optimiza-
tion problem to be solved by the learning system 100 to train
the partially contracting GMM may be
16 c)=argming {aE+fE,} (hereinafter “Formula 9”), such
that

af” af
—M(y)+M(y t)+M(y)—<0 My)>0,Aix*+b, =0, ¥y, k

(hereinafter “Formula 10”), where x* is the desired equilib-
rium point of the GMM. In Formula 9 and Formula 10,
Ep=2,_"v,~a,]%[y,~a,] may be the sum of squared errors;
a,eR” and y,eR” may respectively represent the end loca-
tion and the GMM’s output corresponding to the ith dem-
onstration; E ;- may be the sum of the squares of the GMM
parameters; o and  may be parameters of regularization;
and M(y)eR "™ may represent a uniformly positive sym-
metric matrix.

[0042] Formula 7 and Formula 10 are examples of con-
traction constraints incorporated into the learning process of
the learning system 100. They are derived from contraction
theory, which studies the behavior of trajectories. This
constraint on the Jacobian, which is the first order derivative
of the function f with respect to the state, may ensure that all
the trajectories learned will converge to the goal location as
well as achieve zero velocity at the goal location regardless
of initial conditions.

[0043] At block 250, based on the initialization of the NN
or GMM in block 240, the learning system 100 may learn the
NN or GMM with contraction analysis constraints. Con-
straints may embody motion characteristics, or motion limi-
tations, of the task that was demonstrated. For example, and
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not by way of limitation, if the task is a reaching task, the
user’s hand likely reached a specific velocity (e.g., a zero
velocity) at the object being reached for during the demon-
strations, and if the task is polishing a table, the task likely
includes some periodicity as the user rubbed the table in a
circular motion. In some embodiments, learning with con-
traction analysis constraints may be achieved by solving an
optimization problem, as described below.

[0044] The optimization problem defined in Formula 6
and Formula 7 above can be rewritten as {W,U} =argmin;,
oA0Z, Ty, Ty, a1 71y, ~a,+ B(tr(W Wt (U7U))}
(heremafter “Formula 117), such that U [Z'(U%s)|"WM+
MWZ(U%s)]U,“20, M>0 (hereinafter “Formula 127).

[0045] As shown below, the nonconvex constraints of
Formula 12 can be relaxed to LMI constraints, which may
be used by the learning system 100 to update the NN. It can
be shown that the constraints defined in Formula 12 may be
always satisfied if the following constraints are satisfied:
n=n,, U >0, W<0, M>0 (hereinafter “Formula 13”).
[0046] The sigmoid function o( ) is in the range [0,1], and
thus the derivative of o( )(1-0( )) may have upper and lower
bounds given by 0=0o( )(1-0( ))=<0.25 (hereinafter “Formula
14”). Using Formula 14 and the fact that 2'( ) is given by
Formula 8, each diagonal element of the matrix X'(U”s) may
be lower bounded by 0. The lower bound of the whole
matrix may be given by E'(U%s)=0 (hereinafter “Formula
157). Multiplying MW7 on the left and U ” on the right of
Formula 15 yields MW[Z(U”s)]U, “20 (hereinafter “For-
mula 16”) and U, [2'(U%s)]"WM=0 (hereinafter “Formula
177).

[0047] Given Formula 16 and Formula 17, U [Z'(U%s)]
WM may be upper bounded as U [Z'(U7s)|"WM+MW’
[Z(U%s)]U 7<0 (hereinafter “Formula 18”). If the con-
straints defined in Formula 13 hold, as presumed above, then
Formula 13 and Formula 18 together may yield U, [Z'(U%s)]
TWM+MW? [2'(U%s)]U,“<0 (hereinafter “Formula 197).
Thus, the constraint of Formula 12, being equal to Formula
19, may be satisfied where Formula 13 is true.

[0048] As shown below, the optimization problem defined
in Formula 9 and Formula 10 above can be rewritten as
{W,U}=argmin, {2, My,~a] [y,~a]+BE} (hereinaf-
ter “Formula 207), such that A, “M(y)+M,(y)+M(x)A,<—yM
), M(y)>0, A, x*+b,=0, ¥y, k (hereinafter “Formula 217),
where the ijth element of the matrix M,(y) is given by

é y(y)

My (0= ———=(A4y + b).
[0049] Given the Jacobean
a
oL 2 s
y

and the decomposition of the contraction metric M(y)=2 h,
(x) My(y), Formula 10 can be rewritten as >0, 0{A, M,
(WHMHMEOAf=-YM(y), M(y)>0, Ax*+b,=0, Yy, k
(hereinafter “Formula 227). Using the facts 2, h,(x(t))=1 and
O<h,(x(1))=1, it may be shown that Formula 10 is satisfied
where Formula 21 is satisfied. Note that, during implemen-
tation, in some embodiments, the constraint in Formula 21
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may be evaluated at x since the GMM is partially contracting
and the trajectories y(t) and x(t) converge to each other
exponentially.

[0050] Note that, in some embodiments, Formula 21
depends on the state variable and must be enforced at every
point in the state space, rendering the optimization problem
intractable in practice. As shown below, the above noted
state-dependence issue of the condition in Formula 21 may
be overcome by rewriting it as G,<0, A, x*+b,=0, Vk
(hereinafter “Formula 23”).

[0051] On defining the matrices G, & A,"M(y)+M,(y)+M
(X)A,+YM(y), the condition in Formula 21 may be rewritten
as z7G,z=<0, Vz, where zeR " is a vector of indeterminates.
By the way of sum of squares decomposition, it can be
shown that z'G,z=m(x,z)"’G,m(x,z), where m(x,z)eR ", is a
vector of monomials in the elements of x and z; the elements
of the matrix G, are polynomials in the elements of the
unknown parameters and may be obtained by coefficient
matching.

[0052] Blocks 230-250, described above, may be per-
formed by the training unit 130 in some embodiments. At
block 260, the method 200 may exit, having trained the NN
with contraction analysis constraints.

[0053] FIG. 3 is a flow diagram of a method 300 for
causing a robot to perform the task, according to one or more
embodiments of this disclosure. This method 300 may be
executed by the learning system 100 after having executed
the method 200 of FIG. 2.

[0054] The trajectory generated by the semi-contracting
NN or the partially contracting GMM defined above does
not take obstacles into consideration. In other words, the
feedback being considered by the NN or GMM of the
learning system 100, as described above, may be only the
current state of the robot 110. However, some embodiments
of the learning system 100 may also execute obstacle
avoidance in performing reaching tasks.

[0055] To this end, at block 310, the learning system 100
may obtain locations of one or more obstacles o, in a
workspace of the robot 110; an initial location of an end
effector x(0) (e.g., a point on the robot’s hand) intended to
reach the goal location, to be treated as an origin; and the
goal location x, of the end effector. At block 320, the
learning system 100 may translate the origin to the goal
location. In some embodiments, the learned NN or GMM
generates trajectories to the origin. Thus, this translation
may be performed to generate trajectories to the goal loca-
tion instead. Blocks 310-320 may be implemented by vari-
ous means known in the art.

[0056] At block 330, the learning system 100 may imple-
ment obstacle avoidance.

[0057] In some embodiments, implementing obstacle
avoidance includes computing a size of a domain of influ-
ence D,* for each obstacle. For instance, the learning system
100 may use an artificial repulsive potential field in the
workspace of the robot 110, in addition to the semi-con-
tracting dynamics learned above. The repulsive potential V
for the i” obstacle and the origin may be given by

»

1 1 132 p D (hereinafter “Formula 24”)
_ —_— . =< M
v =) 2w o) W=D

0, di(x) > D}
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[0058] The gradient of Formula 24 with respect to a
current state x of the robot 110 may be given by

V. Viu(x) = (hereinafter “Formula 25”)

1 1 1
| V.d(x). d(x) < D
U(Df d;(x))d? xdi(x), di(x) < i

0, di(x) > D

In the above, d,=||x-0/|, may be the Euclidean distance from
X to the location of the i obstacle o,; D,* may be the size
of a domain of influence of the i” obstacle; neR * may be
a positive constant; and V., d,(x) may denote the derivative of
d,(x) with respect to x.

[0059] In some embodiments, the negative gradient of
Formula 24, given by the negative of Formula 25 results in
arepulsive force acting on the robot 110. The repulsive force
may drive the robot 110 away from the obstacles and can
thus be viewed as a force that acts along with an attractive
force to drive the robot 110 to the goal location. The
attractive force may be provided by the semi-contracting NN
or the partially contracting GMM. Thus, where n,, is the
number of obstacles to be avoided, the combined dynamics
f.( ) may be described by x=f (x(t)=f(x(1))-2,V_V,,(x(1)), for
i={1, ..., ny} (hereinafter “Formula 26”).

[0060] In some embodiments, implementing obstacle
avoidance may involve use of a differential equation that
models the obstacle avoidance. According to a study of
human behavioral dynamics, an additional term for n,
obstacles causes a change in acceleration that is given by f_, |
as follows:

ng
Jobs = (¥(1)) = 72 Rv(Dei(exp(-Be; (1)

i=1
where y and f§ are positive scalar constants;

(0; — p)) v(0) ]

() = ] P
#ile) = cos (no;—p(r)nuv(r)n

is the steering angle between (o,—p(t) and v(t); o, is the
position of the i obstacle; R(t) is the rotation matrix that
defines a ninety-degree rotation about the axis r(t)=(o,—p(t)x
v(t). Thus, the combined dynamics f( ) are described by

(hereinafter “Formula 27”)

) = folx@0) = fx(@) +

ax1 }
Fows(x(@0) |

[0061] Insome embodiments, for M=cL, ., , where ceR *
is a strictly positive scalar constant, it can be shown that all
the trajectories of the combined dynamics in Formula 27
converge to the goal location x*. Based on this, all trajec-
tories of the combined dynamics in Formula 27 may con-
verge to the goal location. Thus, for all t, X(t) is not equal to
zero anywhere in the state space except at the goal location
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x*. Therefore, in some embodiments, there are no local
minima present in the state space and the goal location x* is
the global minimum.

[0062] In some embodiments, the combined dynamics
given by Formula 27 may provide the robot 110 with a
combination of two forces, one moving it away from the
obstacles and the other toward the goal location.

[0063] At block 340, the learning system 100 may gener-
ate a trajectory based on the learned NN or GMM along with
obstacle avoidance, as described in Formula 26 above.
[0064] It can be shown that, where T1(t) is a trajectory of
the globally semi-contracting system of Formula 4 and T2(t)
is a trajectory of the combined dynamics of Formula 26, the
smallest distance, defined by S(t)4 [, T1T2||6x||, between T1(t)
and T2(t) satisfies

S(1) < S(1g)e 710770 4 (hereinafter “Formula 28”)

1 — e 1=10)
sup, ld|IV 1 = fo,

[0065] and as
Il
1 co, S(1) < sup, , 7_’ where d(x(1)) = —Z;V, V,;(x)
1
fori={1, ..., ny}. Thus, in some embodiments, there exists

an upper bound on the distance between the trajectory of the
learned contracting model and the trajectory of the com-
bined dynamics (i.e., the learned contracting model using an
obstacle avoidance approach described herein). As a result,
addition of the obstacle avoidance need not lead to the
trajectory to monotonically diverge away from the trajectory
of the original learned contracting model.

[0066] A proof of this involves the following. Differenti-
ating the distance S(t) yields the differential inequality
S=—yS+|/d|, whose solution is given by S(t). Let S(t) be the
solution to the differential equation S=—yS+|/d||. The trajec-
tory S(t) is given by S()=S(t)e """+, "¢ d(x(1))l|dT.
Based on Khalil’s comparison lemma, S(t)<S(t), which
implies S(t)sg(to)e"“(""’)+ft0’e"“("‘)||d(x(t)||d‘c (hereinafter
“Formula 29”). Taking the supremum of ||d(x(t))|| out of the
integral in Formula 29 results in Formula 28. As t—oo, the
exponential terms decay and the bound is given by

S(1) < sup. @
= Supy

[0067] Blocks 330-340 above may be performed by the
trajectory generation unit 140 of the learning system 100. At
block 350, the learning system 100 may convert the trajec-
tory generated above from the Cartesian space into a tra-
jectory in the joint space of the robot 110. In some embodi-
ments, this may be executed through the use of IKFast, a
robot kinematics solver, or by some other solver. At block
360, the learning system 100 may implement the trajectory,
such as by using a low-level joint controller to control the
robot 110 according to the trajectory in joint space. Black
350-360 may be performed by the motion planning unit 150
of the learning system 100. At block 370, the method 300
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may exit, with the robot 110 having performed the task
through moving according to the joint-space trajectory.
[0068] It will be understood by one skilled in the art that
various implementations of the learning system 100 and the
robot 110 may be used. For example, in one embodiment,
the demonstrations may each include a human subject
reaching for a target location to pick up an object, and data
describing these demonstrations may be collected using a
Microsoft® Kinect® for Windows®. The learning system
100 may be implemented on a desktop computer running an
Intel® i3 processor and having 8 GBs of memory. The
methods described above may be coded on the desktop
computer using Matlab 2014a. The learning system 100 on
the desktop computer may be used to control a robot 110,
such as a Baxter robot, whose hand position in 3D Cartesian
space is considered to be the state. Velocity estimates of the
hand may be estimated from position measurements of the
hand using a Kalman filter. There may be six neurons in the
hidden layer of the NN, and the NN weights or the GMM
parameters of the constrained optimization algorithm may
be initialized to weights or parameters obtained by learning
the NN or GMM without the constraints. In the case of the
NN, the identity matrix may be used as the metric M. In the
case of the GMM, the parameters of the state-dependent
contraction metric may be learned from the one or more
demonstrations. Matlab’s fmincon function may be used to
solve the optimization problem. The implementation on the
robot may be achieved through IKFast to convert the result-
ing trajectory into a trajectory in the joint space of the robot.
[0069] Technical effects and benefits of some embodi-
ments include the ability to learn a semi-contracting
dynamic motion model in a state space is presented. The
learned model may be used to generate motion trajectories
of a robot based on human demonstrations. Through a
CDSP, some embodiments of the learning system 100 may
combine the advantages of global stability with a NN model
or a GMM. In some embodiments, obstacle avoidance and
motion planning may be incorporated. The global semi-
contracting nature of the dynamics may make the goal
location globally attractive, thus causing the dynamics to be
robust to perturbations and sensor faults. Further, some
embodiments of the learning system 100 may be platform-
agnostic and thus compatible with various types of robots
110, including robots 110 from various manufacturers.
[0070] FIG. 4 illustrates a block diagram of a computer
system 400 for use in implementing a learning system 100
or method according to some embodiments. The learning
systems 100 and methods described herein may be imple-
mented in hardware, software (e.g., firmware), or a combi-
nation thereof. In some embodiments, the methods described
may be implemented, at least in part, in hardware and may
be part of the microprocessor of a special or general-purpose
computer system 400, such as a personal computer, work-
station, minicomputer, or mainframe computer. For instance,
as described above, the learning system 100 may be imple-
mented on a desktop computer in communication with the
robot 110.

[0071] In some embodiments, as shown in FIG. 4, the
computer system 400 includes a processor 405, memory 410
coupled to a memory controller 415, and one or more input
devices 445 and/or output devices 440, such as peripherals,
that are communicatively coupled via a local /O controller
435. These devices 440 and 445 may include, for example,
a printer, a scanner, a microphone, and the like. Input
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devices such as a conventional keyboard 450 and mouse 455
may be coupled to the /O controller 435. The I/O controller
435 may be, for example, one or more buses or other wired
or wireless connections, as are known in the art. The I/O
controller 435 may have additional elements, which are
omitted for simplicity, such as controllers, buffers (caches),
drivers, repeaters, and receivers, to enable communications.
[0072] The /O devices 440, 445 may further include
devices that communicate both inputs and outputs, for
instance disk and tape storage, a network interface card
(NIC) or modulator/demodulator (for accessing other files,
devices, systems, or a network), a radio frequency (RF) or
other transceiver, a telephonic interface, a bridge, a router,
and the like.

[0073] The processor 405 is a hardware device for execut-
ing hardware instructions or software, particularly those
stored in memory 410. The processor 405 may be a custom
made or commercially available processor, a central pro-
cessing unit (CPU), an auxiliary processor among several
processors associated with the computer system 400, a
semiconductor based microprocessor (in the form of a
microchip or chip set), a microprocessor, or other device for
executing instructions. The processor 405 includes a cache
470, which may include, but is not limited to, an instruction
cache to speed up executable instruction fetch, a data cache
to speed up data fetch and store, and a translation lookaside
buffer (TLB) used to speed up virtual-to-physical address
translation for both executable instructions and data. The
cache 470 may be organized as a hierarchy of more cache
levels (L1, L2, etc.).

[0074] The memory 410 may include one or combinations
of volatile memory elements (e.g., random access memory,
RAM, such as DRAM, SRAM, SDRAM, etc.) and nonvola-
tile memory elements (e.g., ROM, erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), programmable
read only memory (PROM), tape, compact disc read only
memory (CD-ROM), disk, diskette, cartridge, cassette or the
like, etc.). Moreover, the memory 410 may incorporate
electronic, magnetic, optical, or other types of storage
media. Note that the memory 410 may have a distributed
architecture, where various components are situated remote
from one another but may be accessed by the processor 405.
[0075] The instructions in memory 410 may include one
or more separate programs, each of which comprises an
ordered listing of executable instructions for implementing
logical functions. In the example of FIG. 4, the instructions
in the memory 410 include a suitable operating system (OS)
411. The operating system 411 essentially may control the
execution of other computer programs and provides sched-
uling, input-output control, file and data management,
memory management, and communication control and
related services.

[0076] Additional data, including, for example, instruc-
tions for the processor 405 or other retrievable information,
may be stored in storage 420, which may be a storage device
such as a hard disk drive or solid state drive. The stored
instructions in memory 410 or in storage 420 may include
those enabling the processor to execute one or more aspects
of the learning systems 100 and methods of this disclosure.
[0077] The computer system 400 may further include a
display controller 425 coupled to a display 430. In some
embodiments, the computer system 400 may further include
a network interface 460 for coupling to a network 465. The

Feb. 1,2018

network 465 may be an IP-based network for communica-
tion between the computer system 400 and an external
server, client and the like via a broadband connection. The
network 465 transmits and receives data between the com-
puter system 400 and external systems. In some embodi-
ments, the network 465 may be a managed IP network
administered by a service provider. The network 465 may be
implemented in a wireless fashion, e.g., using wireless
protocols and technologies, such as WiFi, WiMax, etc. The
network 465 may also be a packet-switched network such as
a local area network, wide area network, metropolitan area
network, the Internet, or other similar type of network
environment. The network 465 may be a fixed wireless
network, a wireless local area network (LAN), a wireless
wide area network (WAN) a personal area network (PAN),
a virtual private network (VPN), intranet or other suitable
network system and may include equipment for receiving
and transmitting signals.

[0078] Learning systems 100 and methods according to
this disclosure may be embodied, in whole or in part, in
computer program products or in computer systems 400,
such as that illustrated in FIG. 4.

What is claimed is:

1. A computer-implemented method comprising:

recording one or more demonstrations of a task performed

by a user;
determining, based on the one or more demonstrations,
movements of one or more joints of the user;

learning, by a computer processor, based on the move-
ments of the one or more joints of the user, a learned
model incorporating one or more contraction analysis
constraints, the one or more contraction analysis con-
straints representing motion characteristics of the task,
wherein the learned model is at least one of a neural
network and a Gaussian mixture model;

determining a first initial position of a robot; and

determining a first trajectory of the robot to perform the

task, the determining based at least in part on the
learned model and the first initial position.
2. The computer-implemented method of claim 1, further
comprising:
determining a second initial position of the robot for
performing the task, wherein the first initial position
differs from the second initial position; and

determining a second trajectory of the robot to perform
the task, based at least in part on the learned model and
the second initial position;

wherein the first trajectory of the robot and the second

trajectory of the robot converge to a common goal
location.

3. The computer-implemented method of claim 1,
wherein the learned model is the neural network, and
wherein learning the learned model incorporating the one or
more contraction analysis constraints comprises:

initializing the neural network by solving an optimization

problem to generate one or more weights of the neural
network;

generating an updated optimization problem based on the

optimization problem and the one or more contraction
analysis constraints; and

updating the neural network by solving the updated

optimization problem.

4. The computer-implemented method of claim 1,
wherein the first trajectory is in a joint space of the robot.
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5. The computer-implemented method of claim 1, further
comprising:
defining a size of a domain of influence for an object in
a workspace of the robot; and

generating a second trajectory for performing the task,
based at least in part on the learned model, the first
initial position, and the size of the domain of influence
of the object;
wherein the second trajectory avoids the object.
6. The computer-implemented method of claim 5,
wherein the first trajectory and the second trajectory con-
verge to a common goal location.
7. The computer-implemented method of claim 1,
wherein the one or more contraction analysis constraints
require a first velocity at a goal location of the task.
8. A system comprising:
a memory having computer readable instructions; and
one or more processors for executing the computer read-
able instructions, the computer readable instructions
comprising:
recording one or more demonstrations of a task per-
formed by a user;
determining, based on the one or more demonstrations,
movements of one or more joints of the user;
learning, based on the movements of the one or more
joints of the user, a learned model incorporating one
or more contraction analysis constraints, the one or
more contraction analysis constraints representing
motion characteristics of the task, wherein the
learned model is at least one of a neural network and
a Gaussian mixture model,;
determining a first initial position of a robot; and
determining a first trajectory of the robot to perform the
task, the determining based at least in part on the
learned model and the first initial position.
9. The system of claim 8, the computer readable instruc-
tions further comprising:
determining a second initial position of the robot for
performing the task, wherein the first initial position
differs from the second initial position; and

determining a second trajectory of the robot to perform
the task, based at least in part on the learned model and
the second initial position;

wherein the first trajectory of the robot and the second

trajectory of the robot converge to a common goal
location.

10. The system of claim 8, wherein the learned model is
the neural network, and wherein learning the learned model
incorporating the one or more contraction analysis con-
straints comprises:

initializing the neural network by solving an optimization

problem to generate one or more weights of the neural
network;

generating an updated optimization problem based on the

optimization problem and the one or more contraction
analysis constraints; and

updating the neural network by solving the updated

optimization problem.

11. The system of claim 8, wherein the first trajectory is
in a joint space of the robot.

12. The system of claim 8, the computer readable instruc-
tions further comprising:

defining a size of a domain of influence for an object in

a workspace of the robot; and
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generating a second trajectory for performing the task,
based at least in part on the learned model, the first
initial position, and the size of the domain of influence
of the object;

wherein the second trajectory avoids the object.

13. The system of claim 12, wherein the first trajectory
and the second trajectory converge to a common goal
location.

14. The system of claim 8, wherein the one or more
contraction analysis constraints require a first velocity at a
goal location of the task.

15. A computer program product for transferring a skill to
a robot, the computer program product comprising a com-
puter readable storage medium having program instructions
embodied therewith, the program instructions executable by
a processor to cause the processor to perform a method
comprising:

recording one or more demonstrations of a task performed

by a user;
determining, based on the one or more demonstrations,
movements of one or more joints of the user;

learning, based on the movements of the one or more
joints of the user, a learned model incorporating one or
more contraction analysis constraints, the one or more
contraction analysis constraints representing motion
characteristics of the task, wherein the learned model is
at least one of a neural network and a Gaussian mixture
model,;

determining a first initial position of a robot; and

determining a first trajectory of the robot to perform the

task, the determining based at least in part on the
learned model and the first initial position.
16. The computer program product of claim 15, the
method further comprising:
determining a second initial position of the robot for
performing the task, wherein the first initial position
differs from the second initial position; and

determining a second trajectory of the robot to perform
the task, based at least in part on the learned model and
the second initial position;

wherein the first trajectory of the robot and the second

trajectory of the robot converge to a common goal
location.

17. The computer program product of claim 15, wherein
the learned model is the neural network, and wherein
learning the neural network incorporating the one or more
contraction analysis constraints comprises:

initializing the neural network by solving an optimization

problem to generate one or more weights of the neural
network;

generating an updated optimization problem based on the

optimization problem and the one or more contraction
analysis constraints; and

updating the neural network by solving the updated

optimization problem.

18. The computer program product of claim 15, wherein
the first trajectory is in a joint space of the robot.

19. The computer program product of claim 15, the
method further comprising:

defining a size of a domain of influence for an object in

a workspace of the robot; and
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generating a second trajectory for performing the task,
based at least in part on the learned model, the first
initial position, and the size of the domain of influence
of the object;
wherein the second trajectory avoids the object.
20. The computer program product of claim 19, wherein
the first trajectory and the second trajectory converge to a
common goal location.

#* #* #* #* #*
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