US 20190107927A1

a2y Patent Application Publication o) Pub. No.: US 2019/0107927 A1l

a9y United States

Schriber et al.

43) Pub. Date: Apr. 11, 2019

(54) AUTOMATED STORYBOARDING BASED ON
NATURAL LANGUAGE PROCESSING AND
2D/3D PRE-VISUALIZATION

(71) Applicant: Disney Enterprises, Inc., Burbank, CA
(US)

(72) Inventors: Sasha Anna Schriber, Zurich (CH);
Rushit Sanghrajka, Zurich (CH);
Wojciech Witon, Zurich (CH); Isabel
Simo, Zurich (CH); Mubbasir
Kapadia, Zurich (CH); Markus Gross,
Zurich (CH); Daniel Inversini, Zurich
(CH); Max Grosse, Zurich (CH);
Eleftheria Tsipidi, Zurich (CH)

(73) Assignee: Disney Enterprises, Inc., Burbank, CA

(Us)
(21) Appl. No.: 16/155,799
(22) Filed: Oct. 9, 2018

Related U.S. Application Data

(60) Provisional application No. 62/569,097, filed on Oct.
6, 2017.

Publication Classification

(51) Int. CL
GOGF 3/0482 (2006.01)
GOGF 17/27 (2006.01)
GOGF 3/0484 (2006.01)
GOGF 3/16 (2006.01)
(52) US.CL
CPC ... GOGF 3/0482 (2013.01); GOGF 17/2705

(2013.01); GO6T 13/80 (2013.01); GOGF 3/167
(2013.01); GOGF 3/0484 (2013.01)

(57) ABSTRACT

Systems and methods are provided for a workflow frame-
work that scriptwriters can utilize when developing scripts.
A script can be parsed to identify one or more elements in
a script, and various visual representations of the one or
more elements and/or a scene characterized in the script can
be automatically generated. A user may develop or edit the
script which can be presented in a visual and temporal
manner. Information parsed from the script can be stored in
basic information elements, and used to create a knowledge
bases.

RECEIVE ONE OR MORE ELEMENTS OF A SCRIPT AND PRESENT A
VISUAL REPRESENTATION OF THE SCRIPT
100

v

RECEIVE ONE OR MORE UPDATES TO THE ONE OR MORE ELEMENTS
OF THE SCRIPT AND PRESENT A VISUAL REPRESENTATION OF THE
UPDATED SCRIPT
102

v

GENERATE A KNOWLEDGE BASE COMPRISING INFORMATION
INFERRED FROM THE SCRIPT OR UPDATED SCRIPT AND AT LEAST
ONE OF RULES METADATA AND USER QUERIES REGARDING THE
SCRIPT OR UPDATED SCRIPT
104

Y

GENERATE A VISUAL REPRESENTATION OF ONE OR MORE
CHARACTERS’ EVOLUTION WITHIN THE SCRIPT OR UPDATED SCRIPT
106

Y

GENERATE AND UPDATE A STORYBOARD IN REAL TIME BASED ON
THE SCRIPT OR UPDATED SCRIPT, RESPECTIVELY
108

A

GENERATE A 2D OR 3D PREVIEW REPRESENTATIVE OF THE SCRIPT
OR UPDATED SCRIPT
110

Patent Application Publication Apr. 11,2019 Sheet 1 of 25 US 2019/0107927 A1

RECEIVE ONE OR MORE ELEMENTS OF A SCRIPT AND PRESENT A
VISUAL REPRESENTATION OF THE SCRIPT
100

Y

RECEIVE ONE OR MORE UPDATES TO THE ONE OR MORE ELEMENTS
OF THE SCRIPT AND PRESENT A VISUAL REPRESENTATION OF THE
UPDATED SCRIPT
102

3

GENERATE A KNOWLEDGE BASE COMPRISING INFORMATION
INFERRED FROM THE SCRIPT OR UPDATED SCRIPT AND AT LEAST
ONE OF RULES METADATA AND USER QUERIES REGARDING THE
SCRIPT OR UPDATED SCRIPT
104

Y

GENERATE A VISUAL REPRESENTATION OF ONE OR MORE
CHARACTERS EVOLUTION WITHIN THE SCRIPT OR UPDATED SCRIPT
106

A

GENERATE AND UPDATE A STORYBOARD IN REAL TIME BASED ON
THE SCRIPT OR UPDATED SCRIPT, RESPECTIVELY
108

Y

GENERATE A 2D OR 3D PREVIEW REPRESENTATIVE OF THE SCRIPT
OR UPDATED SCRIPT i
110

FIG. 1

Yo
«
S
(=
7 »
<
= ¢ Old . 02Z Advydlt
= $2Z 3400 JIN V1va LNVISISHId
3
(o]
= T 7 H
| | fi—r——— = =
[m _
& _ ! _
o | FIZ "3 UdNOD | ! 802
~ _ | “ INIONT NOLLYZITVYASIA
3 " | !
o |
|
%u “ — i |
- _ G1Z ANIDNIT SOILLATTYNY | i 507 ANIONT SOLLATYNY
= _ ANIHOVE ! ! ANIINOYH
(o} _ MA|!
17 | w _
= |
= _ " ¥0Z 13NVd
. i |
- " m@,wmu 1S 9l¢ INIONZ | _ NOILVZITVNSIAONILIAT
| NOILVZINOYHONAS | !
_ AdjI3 Ldi¥0S m !
_ | ! 702
| W | IN/ NOILLYOIddY NI INOYA
_
| 0TZ ¥3AYIS ANINOVE M b H nnnnnnnnn
b o o cn o o o o - - - — — — — — —— ——— - —— o —— ———

22 FDIA3A MIAIATYd

9¢¢ ONISSIO0Hd
VivAavidn

[
Q¥

Patent Application Publication

Patent Application Publication Apr. 11,2019 Sheet 3 of 25 US 2019/0107927 A1

Patent Application Publication Apr. 11,2019 Sheet 4 of 25 US 2019/0107927 A1

FIG. 3B

Patent Application Publication Apr. 11,2019 Sheet 5 of 25 US 2019/0107927 A1

FIG. 3C

Patent Application Publication Apr. 11,2019 Sheet 6 of 25 US 2019/0107927 A1

FIG. 3D

Patent Application Publication Apr. 11,2019 Sheet 7 of 25 US 2019/0107927 A1

300

302

302C

FIG. 3E

Patent Application Publication

Apr. 11,2019 Sheet 8 of 25 US 2019/0107927 A1

3028

FIG. 3F

Patent Application Publication Apr. 11,2019 Sheet 9 of 25 US 2019/0107927 A1

FIG. 3G

Patent Application Publication Apr. 11,2019 Sheet 10 of 25 US 2019/0107927 A1l

302D

FIG. 3H

Patent Application Publication Apr. 11,2019 Sheet 11 of 25 US 2019/0107927 A1l

O
=)
=
©

300

FIG. 3l

Patent Application Publication Apr. 11,2019 Sheet 12 of 25 US 2019/0107927 A1l

FIG. 3J

Patent Application Publication Apr. 11,2019 Sheet 13 of 25 US 2019/0107927 A1l

Q
o
ht
]

FIG. 3K

US 2019/0107927 A1

Apr. 11,2019 Sheet 14 of 25

Patent Application Publication

FIG. 3L

US 2019/0107927 A1

Apr. 11,2019 Sheet 15 of 25

Patent Application Publication

v Old

4;.,..,.,:.... M»
0% 'dWOO I, 8ey
NOLLYHOgv 1100 sy wegmnytdy

o

o

JANIINOYA

OTHZ0F ANIIOVE

247

TR SO

US 2019/0107927 A1

Apr. 11,2019 Sheet 16 of 25

Patent Application Publication

US 2019/0107927 A1

Apr. 11,2019 Sheet 17 of 25

Patent Application Publication

dg

Old

FaE

Patent Application Publication Apr. 11,2019 Sheet 18 of 25 US 2019/0107927 A1l

FIG. 6A

Patent Application Publication Apr. 11,2019 Sheet 19 of 25 US 2019/0107927 A1l

FIG. 6B

US 2019/0107927 A1

Apr. 11,2019 Sheet 20 of 25

Patent Application Publication

L Old

g

I | SRy

Crs TS A SRS N
A = iU A OO S | SRaEy
D MR = TR iAganRY
IS A = PR

gonny

US 2019/0107927 A1

Apr. 11,2019 Sheet 21 of 25

Patent Application Publication

8 Old

R PR R A er)

s g

US 2019/0107927 A1

Apr. 11,2019 Sheet 22 of 25

Patent Application Publication

6 Old

Patent Application Publication Apr. 11,2019 Sheet 23 of 25 US 2019/0107927 A1l

FIG. 10

Patent Application Publication Apr. 11,2019 Sheet 24 of 25 US 2019/0107927 A1l

FIG. 11

Patent Application Publication Apr. 11,2019 Sheet 25 of 25 US 2019/0107927 A1l

1200

/‘

- » PROCESSOR 1204
MEMORY
N > 1208

STORAGE DEVICES
1210
MEDIA DRIVE MEDIA
1212 1214
B BEEEE—
BUS
1202 STORAGE STORAGE
UNIT VF UNIT
1220 1222
COMM I/F
- 1224 < CHANNEL 1228 >

FIG. 12

US 2019/0107927 Al

AUTOMATED STORYBOARDING BASED ON
NATURAL LANGUAGE PROCESSING AND
2D/3D PRE-VISUALIZATION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application claims priority to U.S.
Patent Application No. 62/569,097, filed on Oct. 6, 2017,
which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure relates generally to story-
board creation, and more particularly, to applying natural
language processing (NLP) techniques to scripts in order to
extract metadata upon which storyboards may be created.
Moreover, the present disclosure relates to two-dimensional
(2D)/three-dimensional (3D) pre-visualization of one or
more aspects of a script.

DESCRIPTION OF THE RELATED ART

[0003] A storyboard can refer to a sequence of images or
drawings that describe technical and artistic parameters
characterizing a form of media, such as a movie, a perfor-
mance, and the like. Examples of these parameters can
include a type of a shot, the position of a character, motion,
camera, lighting, etc. that are used in creating a story on
which the media is based. Traditional production teams
follow a process whereby a script is developed or written.
The script may then be translated into visual representations
by storyboard artists. Storyboards can be useful for visual-
izing a story, the timing of each character’s appearance, exit,
action(s), etc., and a corresponding environment while still
in the early stages of a media project, e.g., TV, live-action
movie, animation, theatre, comics, novels, and other forms
of media or performances. Storyboard creation is usually an
iterative and lengthy process performed by a group of
storyboard artists that sketch the visual representations by
hand or with the help of digital sketching software.

[0004] Regarding the process of script writing, writers are
often concerned with maintaining logical consistency
throughout a single story or multiple, interrelated stories,
such as those upon which movie series or movie worlds are
based. For example, a movie and subsequent sequels may
have a magical theme or world as a backdrop that follows a
set of rules or parameters. To write scripts that are consistent
with that magical theme or world, writers must focus on
complying with those rules or parameters. Oftentimes, writ-
ers become preoccupied with the need to follow such rules
or parameters, and lose focus on story development.

BRIEF SUMMARY OF THE DISCLOSURE

[0005] In accordance with one embodiment, a computer-
implemented method comprises presenting a visual repre-
sentation of the script based on one or more elements of a
script, and presenting a visual representation of an updated
script based on one or more updates to the one or more
elements of the script. The computer-implemented method
further comprises generating a visual representation of one
or more characters’ evolution in the script or updated script,
and generating and updating, in real-time, a storyboard,
based on the script or updated script, respectively, the
storyboard including the visual representation of the one or
more characters’ evolution. Further still, the computer-

Apr. 11,2019

implemented method comprises generating at least one of a
two-dimensional (2D), three-dimensional (3D), and camera-
view preview of the script or updated script.

[0006] In one embodiment, the computer-implemented
method further comprises presenting a user interface receiv-
ing user input regarding at least an addition or modification
of'one or more scene elements of the script or updated script.
In one embodiment, each of the one or more scene elements
corresponds to a location, dialog of the one or more char-
acters, a transition, and an action. In accordance with one
embodiment, the computer-implemented method further
comprises receiving, via the user interface, user input
regarding a camera-shot option associated with the one or
more scene elements corresponding to a location, dialog of
the one or more characters, and an action.

[0007] In one embodiment, the computer-implemented
method further comprises recording, through the user inter-
face, a soundtrack commensurate with the dialog of the one
or more characters.

[0008] Inone embodiment, the generating and updating of
the storyboard comprises creating a storyboard frame based
on each of the one or more scene elements.

[0009] Inone embodiment, the visual representation of the
one or more characters’ evolution in the script or updated
script comprises a 2D timeline view. In one embodiment, the
2D timeline view comprises at least two axes, a first of the
at least two axes representing the one or more characters,
and a second of the at least two axes representing a temporal
aspect of the script or updated script. In one embodiment,
each of the one or more characters are represented by a
timeline along the first of the at least two axes, and wherein
interaction between at least two of the one or more charac-
ters is visualized by a meeting of each timeline representa-
tive of the at least two of the one or more characters.
[0010] In one embodiment, the computer-implemented
method further comprises presenting one or more represen-
tations of one or more cameras, wherein use of the one or
more cameras relative to the one or more characters spatially
and temporally is reflected.

[0011] In one embodiment, the presentation of the 2D
preview of the 3D preview comprises presenting a 2D map
or a 3D map including one or more elements represented
within the script or updated script, and a spatial represen-
tation of the one or more elements set forth within the script
or updated script.

[0012] In one embodiment, the computer-implemented
method further comprises correlating one or more images
associated with camera shots to the one or more elements of
the script or updated script to generate or update the story-
board.

[0013] In one embodiment, the computer-implemented
method further comprises generating a heating map in
conjunction with at least one of the 2D preview of the 3D
preview.

[0014] In one embodiment, the heating map represents a
relationship between two or more scene elements of the
script or updated script.

[0015] In accordance with another embodiment, a system
comprises at least one of natural language processor and an
analytics engine extracting metadata from a script or an
updated script. The system further comprises a visualization
engine: presenting a visual representation of the script based
on the metadata, the metadata being representative of one or
more elements of a script; presenting a visual representation

US 2019/0107927 Al

of an updated script based on one or more updates to the one
or more elements of the script; generating a visual repre-
sentation of one or more characters’ evolution in the script
or updated script; generating and updating, in real-time, a
storyboard, based on the script or updated script, respec-
tively, the storyboard including the visual representation of
the one or more characters’ evolution; and generating at
least one of a two-dimensional (2D), three-dimensional
(3D), and camera-view preview of the script or updated
script.

[0016] In one embodiment, the at least one of the natural
language processor and the analytics engine generates a
knowledge base comprising information inferred from the
metadata, and at least one of rules metadata and user queries
regarding the script or updated script.

[0017] Inone embodiment, the system further comprises a
user interface receiving user input regarding at least an
addition or modification of one or more scene elements of
the script or updated script, each of the one or more scene
elements corresponding to a location, dialog of the one or
more characters, a transition, and an action.

[0018] In one embodiment, the visualization engine gen-
erates and updates the storyboard by creating a storyboard
frame based on each of the one or more scene elements. In
one embodiment, the visualization engine represents the one
or more characters’ evolution in the script or updated script
with a 2D timeline view. In one embodiment, the 2D
timeline view comprises at least two axes, a first of the at
least two axes representing the one or more characters, and
a second of the at least two axes representing a temporal
aspect of the script or updated script.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The present disclosure, in accordance with one or
more various embodiments, is described in detail with
reference to the following figures. The figures are provided
for purposes of illustration only and merely depict typical or
example embodiments.

[0020] FIG.1 is a flowchart of example operations that can
be performed to provide a script workflow and generate one
or more visualizations, such as a 2D visualization, a story-
board, and/or a 3D pre-visualization in accordance with
various embodiments.

[0021] FIG. 2 is a schematic representation of a system
architecture in which the workflow and visual generation
operations of FIG. 1 may be implemented.

[0022] FIGS. 3A-3L illustrate example functionality pro-
vided by a user interface of a platform adapted to perform
the workflow and visual generation operations of FIG. 1.
[0023] FIG. 4 is a schematic representation of a virtual
reality data control/user interface system architecture in
accordance with various embodiments.

[0024] FIG. 5A is an example of a parse request message
to an external processing component in accordance with
various embodiments.

[0025] FIG. 5B is an example of a parse result message in
response to the parse request message of FIG. 10A.

[0026] FIG. 6A is an example of a parse interaction group
request message to an external processing component in
accordance with various embodiments.

[0027] FIG. 6B is an example of a parse interaction group
result message in response to the parse interaction group
request message of FIG. 11A.

Apr. 11,2019

[0028] FIG. 7 is an example implementation of a virtual
reality data control interface in accordance with various
embodiments.

[0029] FIG. 8 is an example architecture/workflow for
natural language processing in accordance with various
embodiments.

[0030] FIG. 9 is an example of rule and error definition in
accordance with various embodiments.

[0031] FIG. 10 is an example of natural language process-
ing-based script development that includes rule and error
definitions in accordance with various embodiments.
[0032] FIG. 11 illustrates example functionality of a visu-
alization panel associated with group interaction during
script development in accordance with various embodi-
ments.

[0033] FIG. 12 is an example computing component that
may be used to implement various features of embodiments
described in the present disclosure.

[0034] The figures are not exhaustive and do not limit the
present disclosure to the precise form disclosed.

DETAILED DESCRIPTION

[0035] Various embodiments are directed to a platform or
set of tools with which a user may create or edit a script
using various visual representations, automatically deter-
mine thematic relationships, enforce thematic rules/param-
eters, as well as create a storyboard. Moreover, the platform
can provide a pre-visualization of a story. Users can be
directors, scriptwriters, storyboard artists, and/or other users
involved in the creative process. In some embodiments, the
platform may include various components that alone, or in
conjunction with each other provide a script creation or
analysis/processing function. Another function is a timeline
function that presents a graphical representation of how a
character evolves within a story or scene as a function of a
script. Another function is a storyboard function that allows
a user to generate and/or update a script. Still another
function of the platform includes the aforementioned pre-
visualization that allows a scene from a script to be viewed
by a user in real or near real-time, e.g., a running preview of
the script as it is developed using the platform.

[0036] FIG.1 is a flowchart of example operations that can
be performed to provide a script workflow and generate one
or more visualizations, such as a 2D visualization, a story-
board, and/or a 3D pre-visualization in accordance with
various embodiments. FIG. 1 may be described in conjunc-
tion with FIG. 2 which is a schematic representation of the
workflow and visual element generation of FIG. 1. At
operation 100, one or more elements of a script are received,
and a visual representation of the script is presented. A user
may enter a script through or using frontend application/Ul
202 (FIG. 2) either by typing the script in or by uploading
a script into frontend application/UI 202. The script may be
in a text format, and can be displayed on editing panel 204.
Various embodiments can present or display the script in
editing panel 204 in different ways, e.g., a traditional, linear
script layout with additional features to assist in script
writing.

[0037] Frontend analytics engine 206 and/or backend ana-
Iytics engine 212 may be used to parse the script. Frontend
analytics engine 206 and backend analytics engine 212 may
be resident on the same device or network, or they may be
remotely located from each other. For example, frontend
analytics engine 206 may be resident on a user device on

US 2019/0107927 Al

which frontend application/UI 202 is implemented, while
backend analytics may be implemented on a remotely
located backend server 210, and connected to frontend
application/UI 202 via one or more networks. The network
may be any communications network such as a cellular or
data network, a satellite network, an intranet, an extranet, a
virtual private network (VPN), a local area network (LAN),
a wireless LAN (WLAN), a wide area network (WAN), a
personal area network (PAN), a portion of the Internet, a
portion of the Public Switched Telephone Network (PSTN),
or any combination thereof.

[0038] Depending on the complexity of the script, the type
of analysis to be performed, and/or the processing power of
a device or processor with which the frontend application/UI
202 is implemented, a particular analytics engine may be
selected to operate on the script.

[0039] Forexample, frontend analytics engine 306 may be
utilized to extract metadata from the script. That is, frontend
analytics engine 206 may be programmed with natural
language processing functionality such that it can analyze
the text of a script and determine the existence of meaningful
language, such as language indicative of characters, actions,
interactions between characters, dialog, etc. For example,
frontend analytics engine 206 may extract metadata indica-
tive of a character, e.g., based on text determined or known
to be a name. Frontend analytics engine 206 may extract
metadata indicative of an action, e.g., based on text indica-
tive of action, such as verbs. Frontend analytics engine 206
may extract metadata indicative of location, e.g., based on
known names of locations (geographical and/or set location)
or other textual location information found in the script.
[0040] However, backend analytics engine 212 may also
be utilized to parse the script. Thus, backend analytics
engine 212 may be used as a secondary check on the parsing
performed by frontend analytics engine 206. For example, if
the script contains large amounts of complex metadata, and
backend analytics engine 212 can parse the script faster,
backend analytics engine 212 may be utilized for parsing. If
the script is in a language recognized only by backend
analytics engine 212, again, backend analytics engine 212
may be utilized instead of frontend analytics engine 212. In
some embodiments, frontend analytics engine 206 may be
utilized to parse a script, while backend analytics engine 212
may be used to perform more intensive “story analytics” by
checking for logical consistency vis-a-vis a compiler com-
ponent 214 of backend analytics engine 212. In some
embodiments, parsing can be relegated to an external com-
ponent or system, such as natural language processing
(NLP) core 224 (described in greater detail below), e.g.,
when processing requirements and/or speed necessitate a
dedicated NLP system.

[0041] In order to train frontend analytics engine 206
and/or backend analytics engine 212, a logical, formal
language can be developed using known words or most-used
words to represent or indicate a character, location, action,
etc. Using the natural language processing functionality,
frontend analytics engine 206 and/or backend analytics
engine 212 may discover and/or provide information that
can be used by visualization engine 208 to generate a
visualization of the script (described in greater detail below).
[0042] Referring back to FIG. 1, at operation 102, one or
more updates to the one or more elements of the script are
received and a visual representation of the updated script is
presented. Accordingly, frontend analytics engine 206, back-

Apr. 11,2019

end analytics engine 212, and/or NLP core 224 may perform
the aforementioned processing to parse and analyze the
updated script or updated elements of the script.

[0043] Additionally, using the natural language processing
functionality, frontend analytics engine 206, backend ana-
Iytics engine 212, and/or NLP core 224 may build relation-
ships between the extracted metadata commensurate with
the logical, formal language developed in accordance with
various embodiments. For example, backend analytics
engine 212 may parse a script and determine that two
characters A and B are present in a current scene. Based on
additional extracted metadata indicative of some action in
which characters A and B are engaged, determinations can
be made/predicted regarding characters’ emotional states,
positions, relationships, etc. As alluded to above, various
embodiments may compile a script(s) and check for logical
inconsistencies. Determinations regarding whether or not
logical inconsistencies exist may be determined on this
extracted metadata which is used to build a contextual
“world.” Parsing in accordance with various embodiments
can allow a visualization to be realized from a script as well
as allow for a compilation to be checked and/or provide
VR-related production suggestions.

[0044] It should be noted that both frontend/backend ana-
Iytics engines 206/212 and NLP core 224 may access
historical information regarding one or more aspects of the
script or known information associated with the metadata in
order to further enhance their ability to build the contextual
world. For example, one or more persistent data stores (an
example of which may be embodied as a persistent data
library 220) containing information regarding a character’s
action and spoken history in previously produced media
content that, e.g., the introduction of the character in a
currently produced VR experience is contextually consis-
tent. As will be discussed further below, persistent data
library 220 may contain further information that can be
leveraged in accordance with other embodiments.

[0045] It should be noted that backend server 210 may
comprise a script synchronization engine 216 and script
storage 218, which may be one or more databases or data
repositories. Script synchronization engine 216 may operate
to synchronize one or more iterations of a script. For
example, frontend application/UI 202 may be a web-based
or standalone application that can be implemented on one or
more devices simultaneously. This allows a user to develop
a script using different devices. Script storage 218 may be
used to store different iterations or versions of the script
from the different devices. Script synchronization engine
216 may access different iterations or versions of a script in
progress, compare the different iterations or versions, and
update each accordingly so that the user is able to continue
development of the script on any of his/her devices.

[0046] Referring back to FIG. 1, at operation 104, a
knowledge base comprising information inferred from the
script or updated script at least one of rules metadata and
user queries regarding the script or updated script is gener-
ated. In some embodiments (described below), information
encapsulated in the script or updated script is represented
using knowledge elements. Additionally, character systems
(also described below) can be used to thematically connect
two or more characters based on the knowledge elements.
When two or more characters interact with each other, an
interaction group (described below) can be created. The

US 2019/0107927 Al

knowledge base may be generated using NLP core 224 (FIG.
2) in accordance with the aforementioned rules metadata.
[0047] At operation 106, a visual representation of one or
more characters’ evolution within the script or updated
script is generated. That is, various embodiments may pres-
ent a visualization of the script entered by a user and parsed
by frontend analytics engine 206, backend analytics engine
212, and/or NLP core 224. An example of this timeline is
illustrated in FIG. 3E. Compared with the textual represen-
tation of a script in FIG. 3A, FIG. 3E uses a timeline format
that reflects the evolution of a character throughout the
script.

[0048] At operation 108, a storyboard reflecting the script
or an updated storyboard reflecting the updated script is
generated in real-time. At operation 110, a 2D/3D preview
representative of the script or updated script is generated for
presentation to the user. In operations 108 and 110, some
form of abstract or rendered visualization is created to
represent a scene or aspect of the script. That is, the script
is converted from text to visual elements.

[0049] A 2D visualization, such as a 2D top-down view of
a scene(s), may be generated using abstract elements rep-
resenting scene elements, e.g., characters, props, cameras,
etc., although other visualizations in frontend application/UI
202 may be used. A user may “run” a script and visually
observe the resulting scenes as an abstract 2D representa-
tion. The visualization can present different aspects of the
script in real-time. For example, as a user is developing or
editing a script via editing panel 204, visualization engine
208 may be receiving, from frontend/backend analytics
engines 206/212 and/or NLP core 224, information gleaned
from the parsed metadata. Visualization engine 208 may use
this information to generate the character timeline and/or 2D
representation of the relevant aspects of the script. It should
be noted that for simplicity’s sake, visualization engine 208
may present abstract representations of the script compo-
nents, e.g., characters, cameras, props, etc. As the user
continues developing and/or editing the script, the 2D visu-
alization can reflect the current development(s) and/or edits
to the script.

[0050] In some embodiments, visualization engine 208
may present a 2D visualization in non-real time, such as if
the user wishes to view the visualization of the script as
developed/edited thus far. Visualization engine 208 may
present a 2D enactment of the script in its current form. It
should be noted that script storage 218 may also be used to
store different iterations or versions of a script so that
visualization engine 208 may access the different iterations
or versions for presentation to the user. In this way, the user
can see visualizations of the script in different forms or
stages during development or editing.

[0051] Visualization engine 208 utilizes a visual metaphor
language for generating the visualizations. Scene metadata
(e.g., characters, props, and actions) may be extracted from
the script as described above, and used to generate a first
visualization. For example, a library of 3D models may be
used, where the 3D models are parameterized in terms of
visual appearance, or other parameters. This parametric
representation may be referred to as a “smart object.”
Moreover, one or more catalogs of different kinds of inter-
actions which may be possible between any two pairs of
objects, which are referred to as “affordances” may be
utilized. Metadata obtained from a script, for example, may
be mapped to one or more instances of smart objects and

Apr. 11,2019

corresponding affordances that are being invoked between
them. In this way, one or more elements of a VR environ-
ment can be transformed from scene metadata to an actual
visual representation.

[0052] Each character in the script (if present in a cur-
rently-presented scene) has a position in the visualization.
The same holds true for props, and if necessary, equipment
such as lights and/or cameras. The position of these scene
elements can change over time. When users “run” the script,
the visualization may dynamically update to show the move-
ment of elements across, e.g., checkpoints creating an afore-
mentioned 2D top-down preview. Checkpoints can refer to
a reference time point. The preview can be viewed in
real-time, slowed down, and/or sped up as desired. A pre-
liminary timing check can be used. However, the timing of
events in virtual space can be markedly different from that
on 2D storyboards because, as described above, different
characters, props, interactions, actions, etc., can be present/
occurring in the 360 degree space of a VR environment.
Accordingly, one or more of frontend/backend analytics
engine 206/212 and NLP core 224 may adjust any event
timing or timing checks for consistency among different
aspects of a scene.

[0053] In some embodiments, a “heating map” may be
generated. A heating map can refer to a visual representation
of a script element’s relationship to another script element.
For example, a heating map can be used to represent how
close a character is to a camera or another character.
Information gleaned from such a heating map can provide
direction to a user regarding the use of “call to action” hints.
A call to action hint can refer to some cue directed to the
audience that draws their attention to a particular part of the
scene, e.g., a subtle increase in lighting that directs the
audience’s attention to some action or character or other
element in that part of the scene. Other calls to action may
include, but are not limited to the use of louder audio that
directs the audience to the source of that audio. In some
instances, heating map information can be used to inform the
user or scriptwriter of an aspect of the scene that should be
addressed by inserting dialog or having one or more char-
acters engage in some action, etc.

[0054] As the user develops or edits the script and/or
adjusts one or more aspects of the visualization, visualiza-
tion engine 208 reflects the appropriate changes relative to
the first visualization. It should be noted that changes can be
effectuated by the user interacting with the script through
editing panel 204. Additionally, the user may alter one or
more aspects of a scene using the visualization itself as it is
presented as part of the frontend application/UI 202 which
is interactive. For example, the first visualization may reflect
a current state of the script as set forth in editing panel 204.
The user can then adjust the placement of objects, props,
characters, as well the speed of the movement of those
objects, props, and/or characters by interacting with the first
visualization. Thus, visualization engine 208 can generate a
visualization based upon information or input from editing
panel 204, where editing panel 204 may include a section for
script editing, as well as a section for presenting and/or
editing the visualization.

[0055] If the user wishes to add an object that was not
identified during parsing of the script, it can be added
manually (again through the visualization section of editing
panel 204), after which frontend/backend analytics engines
206/212 and/or NLP core 224 will track all references to that

US 2019/0107927 Al

object going forward. In some embodiments, frontend/back-
end analytics engines 206/212 and/or NLP core 224 can
update the script in editing panel 204 to reflect any objects,
characters, etc. added through a visualization and/or not
identified during the metadata parsing stage. In some
embodiments, a separate visualization panel or section sepa-
rate from editing panel 204 may be used for presenting the
visualization to the user (not shown).

[0056] In some embodiments, persistent data library 220
may contain images of outfits associated with one or more
characters, sketches (image and video), or any other relevant
information or data that can be used to create and/or edit
aspects of the script or visualization.

[0057] Generation of the storyboard can perform by visu-
alization engine 208 as well. The process for generating the
storyboard is similar to generation of the 2D visualization
described above. However, the characters, props, and other
elements parsed from the script and associated with visual
elements are reflected in a sequence of still images. The
storyboard may be presented on editing/visualization panel
204. The storyboard may be printed or exported in different
formats, e.g., JPEG, PNG, TIFF, PDF, etc.

[0058] Again, similar to the 2D visualization and story-
board generation, the script or updated script may be used to
generate a 3D representation of cameras, locations, objects,
etc. present in a scene of a script. That is, the 3D preview
may be presented using the abstract representations utilized
in the 2D visualization. The 3D preview may be used to
assess the script or story in terms of contextual and/or
thematic cohesiveness, consistency, aesthetic appeal, etc.
For example, a writer may present the 3D preview to a
potential producer, or a director may present the 3D preview
to one or more actors. The director may view the 3D preview
in advance of an actual rehearsal in terms of a live action
movie, or prior to animating characters, scene elements, etc.
for an animated production. In some embodiments, the 3D
preview may be presented to the user instead of the 2D
top-down visualization during script development/editing.
In some embodiments, a 3D preview can be output to an
augmented reality (AR) or VR-rendering application/device.
For example, the 3D preview may be presented to a user
through preview device 222 (FIG. 2). As discussed above,
preview device 222 may be an HMD, a see-through display,
a video see-through display, a laptop computer, a smart-
phone, a tablet, a mobile device, a projector, a monitor, a TV,
and/or other displays.

[0059] It should be noted that in some embodiments, the
visualization can be used as a basis for creating an actual VR
experience based on the script or story. That is, a user may
associate the abstract representations of objects, props, char-
acters, etc. with fully-realized digital representations, back-
grounds can be added, etc. such that the visualization can be
translated into actual media content. Technologies such as
photogrammetry may be utilized to translate 2D content into
3D models/content for use in the VR experience.

[0060] It should be noted that a compiler 214 of backend
analytics engine 312 can be used to analyze a script for
consistency and provide recommendations for addressing
any inconsistencies. That is, a text script, e.g. one entered
into or uploaded via frontend application/UI 202, can be
analyzed for structural and/or contextual validity. That is, a
script may be analyzed for any logical inconsistencies. The

Apr. 11,2019

script may be analyzed from a “linear” or traditional 2D
experience perspective as well as from a virtual reality (VR)
experience perspective.

[0061] For example, compiler 214 may receive informa-
tion regarding the metadata extracted from the script as well
as any information or data derived therefrom from frontend/
backend analytics engine 206/212 and/or NLP core 224.
Compiler 214 may utilize this information to check a current
iteration or version of the script for structural validity. For
example, compiler 214 can determine whether or not any
structural errors are present. A structural error can refer to
errors associated with “physical” representations, e.g., errors
in camera placement, prop placement, and the like, that are
not physically realizable in a scene. An example of a
structural error can be a scenario where a camera “goes
through” a prop—this is not possible, and should be iden-
tified. Compiler 214 may also determine whether or not any
contextual errors are present. A contextual error can refer to
story-based inconsistencies, e.g., the user has a particular
character speaking in a scene, where that character has not
yet made an entrance in that scene, or the character was
killed off in a previous scene.

[0062] Compiler 214 may generate one or more notifica-
tions regarding the error. The one or more notifications may
simply be notifications that inform the user that an incon-
sistency exists, as well as where, and/or what aspect(s) or
element(s) of the script is involved. In some embodiments,
the one or more notifications may be recommendations to
the user regarding solutions to rectify the inconsistency. For
example, backend analytics engine 212 may, from the parsed
metadata, determine that an interaction exists between two
or more characters in a particular portion of a scene.
Compiler 214 may analyze this information and determine
that a call to action cue should be provided to the audience
based upon this existing interaction. Accordingly, compiler
214 generates a notification suggesting that the user insert a
call to action cue, such as a lighting change or audio cue to
direct the audience to that interaction.

[0063] As alluded to above, the disclosed platform pro-
vides the ability to create and edit scripts, the ability to
represent character evolution using a visual timeline, the
ability to generate storyboards, as well as the ability to
generate pre-visualizations, whether 2D or 3D. Examples of
these functions are described and illustrated in FIGS. 3A-3L.

[0064] FIG. 3A illustrates a script layout view with addi-
tional features presented in the UI to assist in writing a
narrative story in natural English language. An example Ul
300, which may be an embodiment of frontend application/
UT 202, includes editing panel 302. Editing panel 302, which
may be an embodiment of editing/visualization panel 204 of
frontend application/UI 202, is used to present a textual
representation of a script. A user can add, edit, delete, and/or
view the script.

[0065] A script may include a series of scenes. Each scene
can be thought of as containing elements referred to herein
as “modules.” Modules may describe each sentence of the
script (1 module=1 sentence, irrelevant with respect to its
written content). A module may be thought of as an “atomic”
portion of a story. Examples of modules may be any of the
following: location, dialog, transition, or action. A user can
describe the module in a sentence, add or drag it into the
script or existing modules. FIG. 3A illustrates representa-
tions of these modules. When a user wishes to introduce a

US 2019/0107927 Al

module into the script, the user may select a desired module
and drag it to a desired point in the script on editing panel
302.

[0066] A location module sets a new environment of the
story. A dialog module sets a spoken conversation of a
character. A transition module sets a period of changing from
one state to the other, normally used at the beginning and the
end of each scene. An action module sets an expressive
action taken by the characters of the scene. FIG. 3B illus-
trates an example of a user hovering on an action module
placed into the script. Because the module is an action
module, an option to view the action can be presented to the
user vis-a-vis a selectable “film” icon.

[0067] Location, dialog and action modules are provided
with the option of choosing a camera shot. A context menu
will open upon selecting a camera shot icon and will give a
list of options for each module. For example, FIG. 3B
illustrates an example of a user hovering on an action
module placed into the script. Because the module is an
action module, an option to view the action can be presented
to the user vis-a-vis the selectable “camera shot” icon.

[0068] By default, the platform can recommend the most
appropriate and common shot for the given module.
Although it is an automated process, users have the option
to manually edit the selected camera shot by choosing
another one from the list. The list may include options for
common type of shots, common angle shots and common
camera movements. In the event a user is not satisfied with
the given list, an additional option to create a new camera
shot is provided at the end of the list. This option allows
users to create and assign a name to their own personalized
camera shot.

[0069] Each module, and therefore each camera shot, will
create a frame for a storyboard that can be generated. An
example of the camera shot list 304 is illustrated in FIG. 3C.
As illustrated, the camera shot list 304 includes a variety of
different camera shot images generated for the user. As noted
above, a particular camera shot option in the camera shot list
304 can be identified (e.g., as being recommended) or is
selected by default), in this case the “long shot.” However,
the user may select another camera shot from the list, in this
case a “medium shot” of the character “Mary.” It should be
noted that in some embodiments, the camera shot may be
considered to be a module itself, and a camera shot module
option may be provided to the user.

[0070] Insome embodiments, the user can record a sound-
track with their (or another’s) voice over any dialog text as
voice clips. Soundtracks associated with the dialog will be
automatically animated in a 3D visualization. Characters
assigned to the voice clips will be animated with lip sync
technology so that the character preview (e.g., 3D pre-
visualization) accurately mirrors the speech in the dialog.

[0071] FIG. 3D illustrates an example of a record dialog
interface 306. As illustrated, a user may select an option to
record spoken dialog of the script text, e.g., Mary’s dialog
“What does this mean.” After recording, the user may play
back the spoken dialog, e.g., Steve’s dialog “Ok, mum. I will
can you back” Time durations associated with the
spoken dialog can be determined and presented to the user.
Visual representations of the spoken dialog, such as a
simulated oscilloscope, can also be presented. The user may
wish to ascertain volume levels and/or timing associated
with the spoken dialog.

Apr. 11,2019

[0072] As noted above, the script can be uploaded to the
platform. That is, a script in a platform-specific format or
other third-party format can be uploaded. In some embodi-
ments, the platform may perform a conversion from a
non-native platform format to the native platform format.
Additionally, a script can be exported in another formation,
e.g., pdf, rtf, txt, etc.

[0073] A noted above, a timeline view can be used to
illustrate the evolution of each character in a scene as a
graphical 2D representation of the script. An example of this
timeline view is illustrated in FIG. 3E. The timeline view
can be presented in editing panel 302. That is, a user may
switch between a textual script representation view and a
timeline view. The X-axis represents the different characters
and the Y-axis represents time. In order to be fully distin-
guishable each character may be assigned its own color. The
representation of any interactions between characters (inter-
action view) is created automatically from the parsed script.
The script can be represented in a character-centric perspec-
tive from top to bottom. This differs from other timelines in
the prior art that are normally presented horizontally. In this
way, a user can switch between the textual script view (also
vertically presented) and timeline views and have the posi-
tion of each module (one after the other) or elements
(ordered in time) as a reference, available in both views. In
some embodiments, the timeline view can be presented
along with/in conjunction with the textual script view (also
vertically presented) so that both that be analyzed/referenced
during script creation or editing. It should be understood that
the timeline view can be generated automatically. However,
the user may still edit the script from a time perspective.
[0074] There are lines and controls for each character,
camera, and smart object in a scrollable container. Addition-
ally, environment sound files can be placed here as well. By
hovering over modules users can get information, add new
actions, interactions and dialogs, add new characters and
smart objects, etc. Elements on the lines represent the
dialogs and action modules, and can also be dragged into
different positions and overlapping positions (when various
actions or dialogs or an action and a dialog are happening at
the same time). Every change made in the timeline affects
the textual script view. For instance, if a user decides to
position an element in another position on time (i.e., posi-
tions a dialog after an action), the same change will be
reflected in the script view and the modules will adjust
accordingly to the new time.

[0075] FIG. 3E illustrates an example of a timeline view
in accordance with various embodiments. A timeline may
include one or more character timelines, an example of
which is character timeline 302A. “Bubble” 302B may
represent dialog to be spoken by a character in the particular
scene represented in editing panel 302. The user may have
entered this dialog, or it may have already been present, and
the user is checking to see what dialog is associated with a
particular character at a particular point in time in the scene.
Element 302C presents background audio to a user.

[0076] It should be understood that the user may manipu-
late one or more aspects of Ul 300, e.g., the character
timelines, by selecting and, e.g., dragging a character time-
line in accordance with the user’s desired effect. For
example, when character timelines are brought together or
near each other, it is indicative of the represented characters
engaging either other through scripted dialog or action(s).
Different representations indicating the presence or exit of a

US 2019/0107927 Al

character in or from a scene can be presented. For example,
a solid timeline can indicate the presence of a character,
whereas a dotted timeline can indicate that the character has
left the scene.

[0077] A timeline controller or pointer 302D may be used
by the user to “scroll” through a script/timeline in editing
panel 302. The timeline controller 302D may be associated
with a time depending on where it is presently positioned.
[0078] Transitions are represented in the timeline view as
a horizontal block 302E, affecting all the elements in the
scene during this time. When users don’t define a transition,
by default, the transition will be a cut. If defined a specific
transition, the transition will happen between modules. The
time duration of a transition can also be extended or reduced.
[0079] Situations in which the timelines of all characters
come together can be referred to as macro interactions. All
characters/objects have the same interaction, sharing either
position in space or conversation (dialog). Macro interac-
tions are distinguishable from group interactions, where
there are characters in different positions or having separate
conversations. The timelines can be divided into different
identifiable zones to differentiate interactions from each
group. An example of a group interaction is that delineated
by zone 302F, which represents some interaction(s) between
the characters Steve and Evan. Another “group” may include
the character Margaret.

[0080] It should be understood that a character can be in
a particular scene from its starting point or may enter at any
point. Likewise, a character may leave a scene at the end of
the scene or any time prior to the end of the scene. FIG. 3G
illustrates a scene represented in a timeline visualization in
editing panel 302. As illustrated in FIG. 3G, the character,
Mary, appears in the scene from the beginning, but leaves at
point 302G during the scene. On the other hand, character,
Evan, who does not appear at the beginning of the scene
enters at point 302H partway through the scene.

[0081] An idle mode may be used to describe the state of
a character when it is in a scene but not acting or when not
engaged in any interactions. For example, it may be that a
director wants to include a character in a scene, but only in
a “passive” capacity. FIG. 3H illustrates an example of such
an idle mode, where the character, Mary, is in the scene, but
not engaged in any interactions or acting. A modified rep-
resentation of Mary’s timeline, in this case, an indication
3021 (at the 8 second mark) of her idle status, and a hash line
3021' used to represent her timeline during the idle mode,
can be used.

[0082] As described above, a storyboard view may be
another output generated based on the script. FIG. 31 illus-
trates an example of such a storyboard 308. Storyboard 308
may comprise a series of images composed in frames. Each
frame can represent a module from the script. Referring back
to FIG. 3C, the series of images in storyboard 308 may be
made up of images selected by the user during camera shot
selection (or automatically selected/by default for that
scene).

[0083] FIG. 31 also illustrates a 2D visualization 310. A
camera 310A, characters Mary and Steve represented as
elements 310B and 310D, as well as a representation of a
tent 310C is presented in the 2D visualization 310. As
previously discussed, visualization engine 208 (FIG. 2) may
be used to generate visualizations, including 2D visualiza-
tions and storyboards. Validation engine 208 may select
different visual or graphical representations and/or visual

Apr. 11,2019

orientations depending on the type of visualization to be
generated. That is, the 2D visualization 310 presents abstract
elements representative of characters or objects, such as
orbs/circles, while storyboard 308 relies on actual images to
represent characters and objects. It should be understood that
the user may have chosen to associate a particular image
with a particular character. The user may access a data store
of images that can be used. Options can be provided to
hide/show characters (actors) in a current scene, hide/show
the camera(s) in the current scene, and adjust field of view
(FOV) that represents a portion(s) of the scene that a camera
can observe, so that users can plan the positioning of
elements.

[0084] Also illustrated in FIG. 31 is a UI control panel 312
that can be utilized by the user to switch between controlling
different aspects of the script or various visualizations, e.g.,
timeline view, storyboard, 2D visualization, and 3D visual-
ization. Ul control panel 312 may also present relevant
information associated with those different aspects, such as
times or frames commensurate with an action or dialog
involving a character. As noted previously, a timeline con-
troller 302D (FIG. 3A) may be used to walk through a script
or timeline view. Ul control panel 312 may reflect relevant
aspects of a current script, timeline, storyboard, or 2D/3D
visualization, and can update depending on where in a script,
timeline, etc., the user chooses to view.

[0085] FIG. 3] illustrates an example of the heating map
functionality described above. A heating map 314 can be
generated in conjunction with the 2D visualization 310 (or
in a 3D visualization). In this example, color can be used to
indicate the closeness of two or more aspects or elements of
the scene, however, other methods of indicating closeness
can be utilized. In this example, the heating map indicates a
relationship between characters 310E3 and 310D that should
be addressed by the user with, e.g., a call to action. In some
embodiments, colors in the yellow, orange, and red spec-
trums can suggest levels or grades of closeness, whereas
colors in the blue or green spectrums suggest a lack of
closeness. It should be understood that the heating map can
reflect any type of relevant information besides just close-
ness. For example, action or movement, as well as sound can
be reflected in a heating map, where different colors can be
used to represent gradations or levels of reflecting the
intensity or amount of action, movement, sound, whether a
character/object is present, etc. In some embodiments, col-
ors of the heating map can be used to indicate how much
information can be consumed by a viewer at a given camera
position in the scene.

[0086] FIG. 3K illustrates an enhanced view of example
2D visualization 310. It should be appreciated that darker
portions of each element (character/object) can represent
orientation or point of view of the element. For example,
character 3106 is represented as, e.g., “looking” to the right,
while character 310D is represented as looking up towards
character 3106. Element 310C, which as described above,
may be a tent can be represented as having its opening/door
positioned in the direction where character 3106 is posi-
tioned in the scene. This view provides an abstract, mini-
malistic preview of the story a user authors and hides all
detail unnecessary to understanding the spatial relationships
between characters or other elements.

[0087] FIG. 3L illustrates an example of a 3D preview or
pre-visualization of a scene. In this example, the 3D preview
is represented as a birds-eye view. Characters and objects

US 2019/0107927 Al

can be represented by corresponding 3D models/images.
Actions and/or interactions are represented using animation.
Sound/dialog (whether input by the user as noted above or
later-introduced) can also be presented as part of the 3D
preview. This 3D preview provides a user with an easy and
efficient way to grasp where, how, when, and which char-
acters/objects interact. It should be noted that the camera
view may be adjusted in this 3D preview. That is, all
perspectives may be considered and generated when the 3D
preview is created. Camera view may be controlled by a user
actuating the representation of camera 310A. It should also
be understood that the 3D preview is representative of the
FOV and/or the portion of a scene actually being captured by
camera 310A.

[0088] To summarize the user perspective, the disclosed
platform provides script, visualization, and previewing func-
tionality through various components (FIG. 2) that can
operate separately or in conjunction with each other. In some
embodiments, they share defined interfaces, and can support
additional components/functionality.

[0089] In some embodiments, the Ul itself is built with
web-technology (HTMLS5, node.js, angular.js and Cascading
Style Sheets (CSS)) and therefore multi-platform compliant.
UI-Controls built in WebGL with Unreal Engine can provide
the aforementioned 2D and 3D visualizations or previews.
Back-end functionality may be written in C# and contains all
logic to handle user inputs to create a consistent story.
External components, like persistent data library 220 and
NLP core 224 can support the data processing (NLP servers
with their pre- and post-processing of the received data,
written in Java and Prolog) and can accommodate cloud
functionality for multiple devices. The data stored in per-
sistent data library 220 may be generated/stored in a project-
like structure for consistency and conformity purposes.
[0090] Scene metadata which has been prepared by the
back-end logic can be delivered over JavaScript Object
Notation (JSON) interfaces to the controls. Ul “pages” (i.e.,
the script and timeline views) and their associated controls/
other Ul controls are represented by their own typescript
classes and predefined layout. Containers inside those views
are filled dynamically by the data the back-end provides
over edge.js to the pages. The Ul Controls initially contain
all the models, environments and animations to function;
however, the back-end provides logic to upload models in a
predefined 3D format.

[0091] Regarding the back-end logic, every input (either
by user or by the system during reading script file) will be
parsed by the back-end logic and it is decided how the data
will be processed. Data could be sent to external components
for consistency check and identify persons, actions and
objects. However, the logic can also decide if this text is only
relevant for a dialog/direct speech and only has to be
represented with a corresponding dialog module.

[0092] All data gathered will be used to generate multiple
outputs: a logical consistency-checked story for the script-
and timeline view, enriched data for the visual controls to
build up the scene preview and also generating requests to
external components. Additionally, the back-end will also
feed the interface for the persistent layer.

[0093] Consistency checks, identifying characters and
objects with their actions are all based on natural language
processing (Stanford NLP Core). As described above, in
some embodiments, these functions can be handled by one
or more of the frontend analytics engine 204, the backend

Apr. 11,2019

analytics engine 212, or the NLP core 224. In some embodi-
ments, this processing is relegated to the NLP core 224 due
to intense processing requirements relying on heavy
memory consumption and processing time. This can also
reduce complexity on the client-side (back-end and corre-
sponding frontend UI). Furthermore, the platform (or por-
tions of the platform) represented as system 200 (FIG. 2)
may comprise other external operations/elements, e.g.,
metadata processing element 226, enriched with metadata to
process even more functions before and after natural lan-
guage parsing. For example, metadata processing element(s)
226) can be used to identify if a character died during some
action, and the character is not able to continue with a
second action.

[0094] The platform’s persistent layer fulfills multiple
needs. Based on a XML- and folder structure, projects are
saved and loadable, e.g., at/in persistent data library 220,
they are interchangeable for collaboration and they build the
basis for other applications, namely VR and augmented
reality (AR) applications. FIG. 4 illustrates an example
platform 400 that highlights the platforms external connec-
tions and extensions/interactions. FI1G. 4 illustrates a repre-
sentation of the frontend/backend 402/410 of the platform
that comprises the aforementioned Ul controls, interfaces
and logic (which may be respective embodiments of fron-
tend/UI 202 and backend server 210 of FIG. 2). Also
illustrated is an example of an external content component
424, which may be an embodiment of NLP core 224 (FIG.
2), as well as a persistent data component 422, which may
be an embodiment of persistent data library 222 (FIG. 2).
Moreover, platform 400 may include an application launcher
428 that can be used to launch other components/applica-
tions (e.g., AR/VR components 432/434 below). Addition-
ally still, platform 400 may include a collaboration compo-
nent 430 allowing interactions between platform 400 and
other systems/applications, as well as AR and VR compo-
nents 432 and 434, respectively. AR component 432 and VR
component 434 may by embodiments of a preview device
222 (FIG. 2) or other system or device to which 3D previews
may be transmitted for presentation or for augmented/
virtualized realization.

[0095] It should be noted that platform 400 may be
configured such that it is compatible with various operating
systems, e.g., OS-X, MICROSOFT WINDOWS,; etc., by
using an Electron framework. To ensure the ability to allow
users and other entities/providers to collaborate, projects are
file-based and interchangeable. This can be expanded to a
database and/or a cloud share. With robust backend logic,
requests can be handled, and encryption of personal data can
also be enabled.

[0096] The aforementioned use of AR/VR devices or
applications can be realized using “side-applications” (AR/
VR components 432 and 434) that provide full AR/VR
experiences using, e.g., head-mounted displays (HMDs).
They can access the same persistent data and can use the
same algorithm for building the project (a consistent story
and a timeline). However, they can provide different ways of
interacting with a story so the user is be able to navigate
through created stories, to have a series of interactions, and
to manage the story in general.

[0097] In this way, a user can have a very early pre-
visualization of a story. Every sentence written (for example
describing an action between two actors) will lead to an
automated animation with a correct interpretation of either

US 2019/0107927 Al

predetermined or learned conditions. Those detailed visual-
izations allow a user to focus on future tasks which are far
more user friendly in a 3D preview than a textblock.

[0098] The platform 400 manages user input (mouse,
keyboard and speech) and system input (read existing proj-
ects), the logic itself, external connections and persistent
data. This include but not limited to (as described above):
drag and drop standard and custom controls in the UI;
just-in-time and on-demand parsing of written text with an
external natural language component; recording of spoken
text to be saved as audio file or parsed by a speech to text
engine; providing library functions (creating, selecting, stor-
ing objects like actors, locations, scenes, objects, cameras)
with corresponding suitable actions and methods such as
animations; uploading of user-defined locations as models or
as 180/360 degree videos; defining camera cuts, movements
and transitions as well as their position & orientation.

[0099] In some embodiments, platform 400 is imple-
mented as a Client-Server architecture. This leads to a
platform that can run on a user’s computer locally, yet still
have the ability to have custom component/modules, data
processing and/or even single pages, on a remote server.

[0100] The frontend 402 of platform 400 may contain two
main views and multiple managing pages, two standalone-
controls, library-controls and module controls. Additionally,
multiple pages and modal forms for manage the project(s)
and creating content. Each of platform 400’s views and
managing pages are represented by a single page and special
logic in their function class. Project-wide logic and controls
are available for every page. The use of node.js, java- and
typescript and also HTMLS5 will provide the interaction
between the user and the views, modal forms and modular
controls.

[0101] The UI associated with the script view allows the
user to insert modules and build a script. As previously
described, different modules are available, e.g., “Dialog”,
“Action”, “Transition”, and “Location.” The user can drag
them onto the script view. The UI determines where the
module will be inserted: above all other, between two
existing modules or at the very end. Embedded controls can
include the module list: (as mentioned) with “Dialog”,
“Action”, “Transition”, “Location.” For uploading a script,
a control is provided which allows the user to upload a script
in a predefined format (text file with labels). The UI will tell
the logic to parse the script and the logic will determine itself
the different types (identify dialogs, actions, etc.), what
needs to be processed by external components (natural
language engine), and so on. For script printing, a control is
provided to render a PDF directly from the visible text,
either with additional description labels or without.

[0102] Additional controls which are represented by a
software command pattern in the logic allow for undo- and
redo-actions. A control provides for audio recording, which
as alluded to previously, allows the user to upload audio (to
use as environment background sound or directly passed to
a speech to text engine) for further processing. Another
control can be implemented to let the user search for
characters and words in a script. Keyboard shortcuts controls
can be implemented to allow the user to use different
shortcuts to create a new module just below a current
module, for example. Filters can also be implemented
depending on need, e.g., filtering by character, showing
dialog with/without recorded audio, etc.

Apr. 11,2019

[0103] The script view provides all the functions of the
controls mentioned above, to send the needed events to the
logic with all the needed arguments. Furthermore, it shows
different U styles (labels) to enable fast identification of one
or more of the following: where a scene starts and ends;
where a location changes; what camera cuts and transitions
are in the script; and all the modules in different styles (i.e.
passive description text in italic, spoken text by an actor with
their name and color as a label).

[0104] The timeline view allows the user to see and
modify a story in timewise fashion. Characters, objects and
camera(s) are represented by a horizontal line, while actions,
transitions and dialogs of the actors/objects/camera(s) are
shown as different expanded lines (boxes) on the corre-
sponding line. These aspects can be fully interacted with by
the user. The user can hover over the boxes which will show
additional information. For example, hovering over a dialog
box will show the dialog text in the tooltip of the cursor.

[0105] Embedded controls can include the following:
Add/Edit environment sound which allows the user to
record/delete environment sound which will be represented
in the Ul as a soundwave; Add/Edit actor/object/camera
which allows the user to add already known actors/objects/
cameras to the scene by using this menu. It should be noted
that every added actor/object/camera can be represented by
a line but does not have to be mandatory; Add/edit action/
interaction wherein if a user hovers over a line, an icon
appears when the cursor hits the line (is near) helping the
user with add/edit actions/interactions directly to the corre-
sponding user at the given time (determined by the position
of the line).

[0106] Different modal forms can appear depending on
what the user selects (i.e. if the user selects “add action”, the
form shows all the available actions relevant to the add
action).

[0107] In, this way, the user can adjust or expand a script
or even build a script from scratch. All the mentioned
controls above provide their desired function (e.g., by send-
ing data to the back-end on an interaction). Furthermore,
certain specialized functions are available. A Drag & Resize
boxes functions can be provided with which the user can use
to drag displayed modules (box on line) to a new time,
although the box cannot change the owner (drag from one
actor to another). Additionally, the user can resize the box
which will lead to a new duration of the module. Custom
actions of an actor are also available—these can be, e.g.,
“mark as out of scene”, “mark as idle,” “enter scene,” and
“mark as non-idle.”

[0108] With the aforementioned simple (2D) and complex
(3D) visual representation of all the actors, objects and
objects inside the scene, very early pre-visualization with
different level of details can be provided to the user. Those
levels include show/hide camera field of view, and show/
hide actions such as movement and interactions between
objects and or actors. These controls are built with a 3D
engine (Unreal) and provided as a webGL object to be
synced directly with the back-end as well as the front-end.

[0109] Embedded controls can include show/hide heatmap
control which makes a layer visible (controlled by the 3D
engine) and displays the action (heat) as an overlay over the
terrain. The embedded controls can also include show/hide
actors control which shows or hides all actors in the scene,
FOV control that shows or hides all the field of views for all

2 <

US 2019/0107927 Al

the cameras in the scene. With all these controls, a user can
plan next steps during scriptwriting.

[0110] Moreover, controls are provided that allow the user
to zoom with an input device such as a mouse, and a
play/animate control that allows the user to play a particular
scene.

[0111] Library controls are provided that allow a user to
obtain an overview of all the actors, objects and locations
available in a project. More functions like creating, copying
and deleting content (actors, objects and locations) are also
available. Those controls need not be related to a 3D engine
or to a webGL build, but may be built with the same
technology as the main forms (Node.js & HTMLS). 3D
visual representations may be available as thumbnail
images.

[0112] Multiple pages (views) can be provided to the user
that support a full creative workflow, project editing, etc. All
pages many have similar functions since they allow the user
to register objects with all the needed attributes, validate
those attributes, and save them in the back-end logic. All
further processing (e.g., storing to persistent data) can be
handled by the back-end.

[0113] Back-end logic is written in C# and has defined
connectors for the front-end. Currently, the platform 400 can
serve two front ends, e.g., the main Ul, an electron-client
over edge.js, and the webGL built over the same interface.
The Back-end functions are divided into services, where
each service is represented by an interface (based on a
Zenject dependency injection framework). The application
hierarchy starts at a central class for one instance of the
application that handles and manages project loading, saving
and unloading, as well as project creation. Both the appli-
cation and project classes provide events for all occurrences
modifying the resources they manage.

[0114] The back-end controls following different types of
data: projects, scenes, entities (aka objects), looks (all
objects have a predefined look how the preview should be
rendered. This is defined by a primitive which every preview
engine can determine by itself of how to render, affordance
descriptions (discussed below), and (smart) objects (a con-
struct for every smart entity with a given set of affordances,
a defined name and look). This can also be defined by
(smart) actors (an extended smart object but used for actors
with a unique color), (smart) cameras (an extended smart
object but with a different set of default affordances), and the
aforementioned modules that acts as the “building blocks”
for creating a scene. Each module has a start and end time
(which is either be calculated by the logic (through the
length of the dialog) or given by the user through the
manipulations in the UI). Further still, this can be defined by
interaction groups (an object which represents a given group
of actors/objects which are joined over time. The platform
gives the ability to have a simplified representation inside a
scene even if a lot of is happening.) Furthermore, the
back-end provides access to functions such as: NLP-Client
(i.e., sending and receiving data from NLP core 224 (FIG.
2); a parser (a parsing service which only accepts strings by
direct input through the logic itself or the user and returns an
expected result-set (i.e. list of objects, spawned affordances,
etc.); and a persistence layer which provides methods of
storing and reading projects and entities.

[0115] Regarding affordances, platform 400 uses a built-in
tool referred to as an “affordance”. An affordance is different
to an action (e.g., pick up a stone). Rather it’s a direction that

Apr. 11,2019

has to be reverted. The owner of the affordance (stone)
provides a set of affordances over which the owner has
control. The user (actor) initiates the action (pick up), but the
owner (stone) controls and executes it. This structure gives
platform 400 the ability to control actions through an easy
approach.

[0116] As noted above, platform 400 may use external
resources, such as NLP core 224 to process data and user
input. To reduce the complexity and the requirements on the
client application itself (memory consuming databases),
aspects like the natural language parsing and therefore the
pre- and postprocessing of those inputs are performed on an
external server. Accordingly, platform 400 may send
requests to the external resources. A JSON structure uses
descriptions such as those illustrated in FIG. 5A to parsing
a request message from platform 400 to an external com-
ponent, such as a NLP core 224. A parse result message may
use descriptions such as those illustrated in FIG. 5B. Simi-
larly, descriptions used in interaction group request mes-
sages are illustrated in FIG. 6A, and the descriptions used in
interaction group result messages are illustrated in FIG. 6B.
[0117] The interfaces of platform 400 may be used to
connect frontend and backend logic. The connection can be
made with edge.js, which are wrapping functions that allow
logic dynamic link libraries to be called over the defined
edge.js interface. The interfaces can handle different inputs,
e.g., drag and drop inputs from mouse or input device-
events, keyboard shortcuts, etc. The interface also contains
a container to store complex objects on both sides (C# and
node js). Therefore platform 400 is able to attach frontends
which can read C# and all others (with a defined JSON
structure). FIG. 7 illustrates an example interface.

[0118] It should be noted that platform 400 can manage
user inputs and device how they should be processed.
Written inputs (e.g., when a user manually inputs a script)
can be sent directly to, e.g., NLP core 224. Furthermore,
events from the back-end can also interface with external
components, e.g., when a script is loaded, and process it
directly. Moreover, an external application, e.g., AR/VR
applications 432/434, can be launched using application
launcher 428. These executables or components may be
fully independent, yet access the same persistent data. To
exchange data, platform 400 is able to read project folders
and files. Different users with different instances of platform
400 (or frontend/Uls) can collaborate, e.g., via collaboration
component 430.

[0119] The use of natural language processing has been
discussed above and in the context of the present disclosure
can be used to parse a script, infer knowledge/information,
etc. Although various forms of NLP are known, natural
language capabilities pose a challenge in inferencing infor-
mation from complex stories. That is, natural language
understanding has a long way to go before being able to
match the level of inferencing the human brain can make
from reading a story.

[0120] Another challenge lies in the ability to analyze,
compare and sort information extracted from a screenplay or
a script in order to provide the functionality described above
that allows the user to create/edit scripts, generate previews,
etc. all while remaining contextually consistent. The field of
computational narratives has advanced greatly to represent
narratives with the help of story graphs, but these current
data structures cannot be formed directly from a text-based
story. Other difficulties arise when representing relationships

US 2019/0107927 Al

between characters to a user in way that the user can easily
see which characters are currently interacting with each
other and appear in the same place in the story.

[0121] In accordance with various embodiments, the use
of basic/atomic knowledge elements (also referred to as
knowledge bytes) is contemplated. Knowledge bytes repre-
sent the information encapsulated in the script. Additionally,
the implications of comparing knowledge bytes with each
other to form pairwise relations among knowledge bytes
allows for recognition of similar and contradictory knowl-
edge bytes.

[0122] Additionally, various embodiments use character
systems that allow for knowledge bytes to be associated with
one or more characters based on the characters in a narrative
that experience these knowledge bytes in the form of beliefs
and desires. This creates a coherent representation of the
possession of knowledge in the story. Moreover, each char-
acter system can use logical inferencing on the information
that it possesses. With the help of the relationships between
knowledge bytes, it is possible to recognize belief/desire
contradictions or similarities among different characters in
the narrative, enabling future work towards defining rela-
tionships between characters as a combination of intentions
and beliefs.

[0123] Moreover, various embodiments enable script cre-
ators to add reasoning rules and errors vis-a-vis rule sheets.
Rule sheets are capable of parsing structured natural lan-
guage text to generate certain categories of rules and errors,
which can then be used by the character systems, enabling
them to make logical inferences on the information they
possess.

[0124] Further still, the idea of interaction groups is intro-
duced, where characters interacting with each other in a
certain time during the story are considered to be group.
Interaction groups are automatically created when charac-
ters perform actions together or a character is moving from
one place to another where other characters are already
present (FIG. 3F).

[0125] FIG. 8 illustrates an example architecture/work-
flow for natural language processing as implemented in
accordance with various embodiments. It shows how the
creative content originating from the user is processed
through natural language understanding, and further broken
down to a stream of knowledge bytes and fed into various
character systems and the script system. Moreover, the
reasoning and inferencing done by the script system and
character system results in feedback in the form of errors and
belief-desire relationships, which is relayed back to the user.
The rule sheets and character sheets act as alternate forms of
retrieval of logic and character background respectively.

[0126] Inputs to the user interface are presented in three
various forms. The raw script itself is used to build the
knowledge base for the system. A raw script can refer to a
representation of the main story plot, e.g., actions of single
characters and interactions between characters, as well as
character dialog. The raw script can be stored in a story
knowledge base.

[0127] The metadata such as rule sheets allows the system
to understand and make inferences, and character sheets are
another source for information retrieval. That is, metadata
allow rules and/or error definitions to be specified in the
form of a story world knowledge base. Moreover, metadata

Apr. 11,2019

can be used to add information about characters, e.g.,
background information, that are stored in a character
knowledge base.

[0128] Queries from the user are also a form of input,
where the output comes from the script system and reason-
ing system in the form of queries and belief-desire relation-
ships. Queries allow reasoning regarding the knowledge
stored in a story knowledge, story world knowledge, and
character knowledge bases to be obtained/ascertained by
using a knowledge reasoning system (described below).
Input can be analyzed using NLP core 224, which can also
create the knowledge byes, being a base of information flow.
[0129] All the inputs provided by users are then analyzed
using, e.g., a Stanford CoreNLP framework, with extensive
usage of Enhanced++Dependency graphs. Actions and dia-
logs are processed in order to create and save knowledge
bytes containing new information. In the case of user
questions, inferences about the stored information are made,
and output based on the inferences are presented to the user.
If there are any problems during text analysis, appropriate
errors are returned to the user interface too.

[0130] As previously noted, knowledge bytes are basic
elements or “atoms” of information being passed on to the
system, e.g., platform 400 (FIG. 4). A parser can be used to
translate all information into a stream of knowledge bytes
which can then be passed to respective character ad script
systems.

[0131] The script system stores all the knowledge bytes
that are present in the script, and also in the character
systems. It can access each character’s knowledge base and
check for errors and relationships based on similar or
contradictory beliefs and desires.

[0132] The character systems contain multiple knowledge
bases and logical reasoning systems, e.g., one for each
character in a story or narrative. They are responsible for
storing snapshots of the story as a representation of what
each character perceives about the world around them, along
with their “brains” in the form of the reasoning systems.
These systems allow for character-centric representation and
reasoning for the story as well.

[0133] Rule sheets are used to define rules and error
definitions for stories. Rules can be provided by users in
natural language, after they are automatically translated into
a form used by a logical reasoning system. As soon as there
is a query from a user, the logical reasoning system com-
bines information stored in the script and character systems
with information provided in rule sheets to answer ques-
tions, show possible errors in a story or relationships
between the beliefs of different characters, etc. FIG. 9
presents rules created for example sentences, recognizing
beliefs and desires of characters and containing information
about time and location of interactions.

[0134] In some embodiments, one character sheet corre-
sponds to one character in the story and is used to define its
background—a history that happened before the start of the
actual script. All information contained therein is added to
the corresponding character system and used while asking
questions about the character and its knowledge.

[0135] FIG. 10 presents a tool that allows users to create
story scripts and specify rules and error definitions, which
may be presented via frontend/UI 202 (FIG. 2). Its layout is
similar to that of editing panel 204. FIG. 10 illustrates an
example query in a form of question “Who owns the
crown?” that generates a response after analyzing the whole

US 2019/0107927 Al

script provided by the user. In this way, a user can easily
address or pre-emptively avoid any thematic or contextual
inconsistencies without having to, e.g., manually re-read a
script.

[0136] FIG. 11 illustrates another example implementa-
tion of interaction groups (also described above and illus-
trated in FIG. 3F). FIG. 11 illustrates a first interaction group
1100 comprising the characters Mary, Margaret, Evan, and
Lucy. A second interaction group 1102 includes characters
Steve and Ronald. It should be understood that interaction
group 1100 may be formed upon the character Margaret
joining the characters Mary, Evan, and Lucy.

[0137] The particular details regarding knowledge bytes
will now be discussed. As noted above, a knowledge byte
can be defined as the smallest unit of information about a
narrative. It can represent any kind of information present in
a script, such as action, dialog, or questions. Moreover, the
knowledge byte also has support to store the location, time
point, and the coordinates where it takes place. This is done
in order to process spatial knowledge which can be used for
spatial reasoning, which could be used to support newer
forms of storytelling.

[0138] The structure of the knowledge byte is as follows:

[0139] Unique ID—every knowledge byte extracted
from the script has a unique identifier;

[0140] Time point—every knowledge byte has a time
point to keep track of the point in time in the narrative
at which this knowledge byte was first produced;

[0141] Coordinates—each knowledge byte is associ-
ated with three-dimensional coordinates to allow for
spatial reasoning and representation of knowledge
bytes;

[0142] Locations—considering that the medium of text
is a script, knowledge bytes can also store the location
where they are created, to allow for location-based
representation and reasoning, as well as location-based
questions;

[0143] Subject—the subject of the knowledge byte;
Relation—the relationship that is being stored;

[0144] Object—the object to the relation;

[0145] Relational Modifier—the knowledge byte uses
the relational modifier to store additional information
about the relation (commonly used for prepositions);

[0146] Relational Object—the relational object stores
the object that may accompany the relational modifier;

[0147] Relational Question—the relational question
stores a question tag if the knowledge byte is a ques-
tion, and allows the platform to look at what question
the user is asking;

[0148] Negation Flag—a negation flag allows the
knowledge byte to keep track of negation;

[0149] Speaker—when using a knowledge byte to rep-
resent information from dialog, the dialog speaker is
stored as part of the knowledge byte (and can be used
to compare characters learning about similar or con-
trasting information from multiple sources).

[0150] The importance of breaking down the information
into knowledge bytes is that these knowledge bytes repre-
sent information in the forms of beliefs or desires, and can
be stored across multiple characters’ knowledge bases. This
linking of knowledge bytes across various characters’
knowledge bases allows for interesting and illuminating
inferences (discussed below).

Apr. 11,2019

[0151] The introduction of knowledge bytes as a data
structure for handling information about stories enables
many useful operations. These knowledge bytes can be
sorted and oriented based on different parameters. The
knowledge bytes can be sorted by time as well as space or
location, depending on the amount of information the user
chooses to provide to the system through user input. Alter-
natively, the knowledge bytes can also be aligned, based on
the characters’ knowledge. For example, the distribution of
information across various characters can be observed.
[0152] As noted above, different knowledge bases may be
created and used in accordance with various embodiments.
[0153] The story knowledge base is responsible for storing
all the knowledge bytes that are present in the script, along
with references to the various characters as well. Every
knowledge byte from the script is fed to the knowledge base
for the story knowledge, and this allows for reasoning on the
information stored in this knowledge base as well.

[0154] The story world knowledge base is responsible for
storing all the knowledge bytes relevant to a story world.
That is, any knowledge bytes that relate to rules, themes,
parameters, etc. associated with a particular story world or
series can be stored in the story world knowledge base. In
this way, any potential inconsistencies, even across stories,
can be avoided.

[0155] Character knowledge bases are used to form a
knowledge base for the information possessed by each
character, and in order to allow the reasoning system to be
able to let each character work on their own set of beliefs and
desires in a story world. The benefit of having separate
character knowledge bases for each character is that it
allows the scriptwriters to ask questions to each character
and gauge the difference in their responses based on the
information that the character system possess.

[0156] Moreover, each character knowledge base stores
knowledge bytes with some wrapper information, which
describes the relation between the character specific knowl-
edge base and the knowledge byte. The relation-specific
wrapper contains information about the character’s confi-
dence about the knowledge, the time point that the character
learns about the information, and flags that denote whether
the knowledge byte is a belief or a desire. Feedback from the
character’s reasoning system is also stored, in order to be
sent back to the Ul

[0157] The core of the knowledge reasoning system is the
logical reasoning environment. Moreover, all the character
knowledge bases and the story knowledge base have their
own logical inferencing environment. The processed story
world knowledge and the knowledge bytes are fed into the
inferencing system. The inferencing system is queried for
any possible errors, and whenever the user directs a question
to the particular character.

[0158] Logical reasoning can be used by a character
system to perform reasoning capabilities. With the help of
rules, it is possible to make deductions and extract deeper
information from the information that is stored in the
knowledge bytes. Another use for the logical system is to
answer questions, e.g., generating Prolog queries, querying
them across various instances, and reporting the results back
in response to user questions or belief-desire relationships.
GNU Prolog for Java can be used to implement a logical
knowledge reasoning system. That is, multiple types of
Prolog facts can be used to store various parts of the
knowledge bytes.

US 2019/0107927 Al

[0159] Belief facts store or represent the most important
information from the knowledge byte and store it in a
character system’s reasoning system as a belief. The belief
facts take two forms:
[0160] belief(Id, Subject, Relation, Object, NegationFlag).
[0161] belief(Id, Subject, Relation, Object, NegationFlag,
RelationalModifier, RelationalObject, RelationalQues-
tion).
[0162] Desire facts refer to the same or similar informa-
tion as that represented by belief facts, except that they are
stored in the reasoning system as a desire. They have two
forms:

[0163] desire(Id, Subject, Relation, Object, Negation-
Flag).
[0164] desire(Id, Subject, Relation, Object, NegationFlag,

RelationalModifier, RelationalObject, RelationalQues-

tion).
[0165] Location facts represent locations or scene infor-
mation, and reference the knowledge byte ID. Location facts
are formatted as follows:
[0166] location(Id, Location).
[0167] Confidence facts store the confidence level as a
floating value from O to 1, and have the following format:
[0168] confidence(Id, Confidence).
[0169] Coordinates facts are similar to confidence facts,
but the coordinates facts represent information about the
coordinates of the knowledge byte. coordinates(Id, X, Y, Z).
[0170] Time facts allow reasoning systems to be built with
temporal reasoning capabilities, and have the following
format: timeof(Id, Time).
[0171] Additionally, the rules and errors in the reasoning
system can be used. They can be added by users through a
story world knowledge base. The formatting for rules/errors
can vary (an example of which is illustrated and described
above regarding FIG. 9).
[0172] Reasoning across knowledge bases involves the
comparison of knowledge bytes in the various knowledge
bases in order to check whether they have a similarity or a
contradiction. Looking for a possible connection between
knowledge bytes is essential to make inferences across
knowledge bases. Using Wordnet synonyms and antonyms
for the relations used in knowledge bytes can be extracted.
The knowledge bytes can be compared to form relations
between them. Various algorithms may be used to compare
the similarity and knowledge bytes.
[0173] A relational factor 6 is calculated based on the
lexical comparison of two knowledge bytes, which is a
measure of how related they are. 8 varies from -1 to +1, with
-1 denoting contradictory relation, a +1 denoting similarity
between the knowledge bytes, and a 6 closer to 0 represent-
ing that the knowledge bytes may be unrelated.
[0174] Time points and confidence measures are also
taken into account to analyze relationships between knowl-
edge bytes. By default, in one embodiment, a 0.8 weight to
confidence and 0.2 weight to time have been assigned in
order to make the impact of confidence stronger than time.
In some cases, for some pairings of knowledge bytes, there
is an ability to specify custom values for the weights for
confidence and time. This may be relevant in cases where
one may require different level of impact of the difference in
time or confidence of the two knowledge bytes on the
possibility that the two knowledge bytes are indeed related.
[0175] For any two knowledge bytes, 6 denotes the rela-
tional score for the related knowledge bytes. Moreover, the

Apr. 11,2019

time and confidence values for a knowledge byte can be
denoted by T, and C, respectively. It can be assumed that N
is the final time point of the script.

[0176] The equation for determining the relationship
between two knowledge bytes is represented below.

T, - T,
Iz - culcy + 2=

w
Relational Factor =

4

[0177] In order to form knowledge bytes, necessary infor-
mation is extracted directly from the script written in natural
language. The tool for interaction with the user can be
written in C and is running locally. Scriptwriters are able to
provide three different types of input: actions, questions and
dialogs, each in a specifically designated type of the input
field.

[0178] Natural language understanding in some embodi-
ments may be performed independently on a remote server
running a parser written in Java and cooperating with the
Stanford CoreNLP framework, i.e., NLP core 224 (FIG. 2).
The information exchange between a local client and a
server is performed using a universal JSON format.
CoreNLP allows a set of chosen annotators to be used, and
specific properties for any annotator can be adjusted accord-
ing to user’s needs. These properties can be set indepen-
dently for every query.

[0179] While parsing a script different kinds of input can
be distinguished by assigning a speaker field to each text
input—action for a script, question for a question and a
name of a currently speaking actor for a dialog.

[0180] It can be assumed that users input text in para-
graphs consisting of logically connected sentences and every
new “thought™ should be put in a new paragraph, i.e., a new
action, dialog or question input field must be created by the
user.

[0181] A first step of parsing any paragraph involves
applying co-reference resolution to the whole text in the
paragraph—it is focused on assigning real names of actors/
objects/places to personal pronouns (“he”, “they”, “it”, etc.)
based on previously analyzed sentences. An example input
“Adam buys a new phone and he uses it” would be translated
into “Adam buys a new phone and Adam uses a new phone.”

[0182] Moreover, a coref annotator can be used, and a
coref.algorithm property can be set to “neural” in order to
use a more precise (but slower) neural-network-based reso-
Iution. Alternatively, if speed is more of a concern, a specific
value for coref algorithm property need not be assigned in
order to rely on a more basic deterministic system.

[0183] After applying the co-reference resolution, text is
then split into individual sentences, which are later token-
ized and single words (tokens) are extracted. Each token is
usually related to others, which is resembled in tree-like
constituency and dependency graphs. That is, subjects, rela-
tions and objects—so-called relation triples, are extracted.
As a base for triples generation, the Stanford Open Infor-
mation Extraction was used in accordance with one embodi-
ment, Alternatively, if many possible relations are missed, a
custom pipeline can be created and used to cope with more
complicated sentences. They include simple, continuous,
past and present tenses, and active and passive voice.

US 2019/0107927 Al

[0184] A standard way of creating knowledge bytes
involves extracting:

[0185] Subject—a noun—forms subj dependency with
relation

[0186] Relation—a verb—usually a root of dependency
tree

[0187] Object—often a noun—forms obj dependency

with relation

[0188] Negation Flag—boolean—True if relation,
object or relational object has any negation (neg)
dependency

[0189] Relational Modifier—usually precedes rela-
tional object and forms case dependency with it (e.g.
“go to someone™)

[0190] Relational Object—usually forms a nominal
modifier (nmod) dependency with relation (e.g. “go to
someone”

[0191] Relational Question—described in section 7.3

[0192] There are some exceptions from the standard
way of extracting components of knowledge bytes. The
most common case is while using a verb “to be”, as it
has different meanings depending on the context:

[0193] an auxiliary verb (aux), usually the case for
continuous tenses, e.g. for sentence “Adam is going to
school” the actual relation would be “go”

[0194] a passive auxiliary verb (auxpass), used for
passive voice, e.g. for sentence “Adam was chosen” the
actual relation is “was” and the object is “chosen”

[0195] a copula (cop), used mainly for describing sub-
ject, e.g. for sentence “Adam is honest” the actual
relation is “is” and the object is “honest”.

[0196] It should be noted that an object either may not be
set (see first example in Table 1) or does not have to be a
noun as in the case when the relation token and the object are
connected by open clausal complement (xcomp). An
example sentence “Adam does not enjoy going to school” is
then resolved as an extended form of knowledge byte as
shown in the second example of Table 1, where the object is
a verb “going.” For sentences involving more than one
subject, relation or object several triples can be created, each
consisting of one subject, one relation and one/no object as
shown in the third example of Table 1. Additionally, adver-
bial modifiers forming advmod dependency with verbs can
be extracted, although they need not necessarily form part of
a knowledge byte.

[0197] Each paragraph and each sentence in the paragraph
are indexed and used to provide a proper timing, saved as a
time point in the knowledge byte. All triples generated from
one sentence are assigned the same time and resulting
actions are set to happen simultaneously. It can be assumed
that questions and dialogs follow similar structure as actions
in a way that subjects, relations, objects, relational modifiers
and relational objects can also be extracted.

[0198] With respect to parsing questions, the biggest dif-
ference is the possibility to extract question words, such as
“who”, “what,” etc. They are found by looking for either
subjects or objects (similar to actions), while making sure
that they are relational pronouns starting with “wh” and
stand at the beginning of the sentence.

[0199] Moreover, questions can be asked of or directed to
a particular character by starting a question with his name.
For example, after asking a question “Adam, who meets
Isa?” or “Adam, tell me, who meets Isa?” a response about

14

Apr. 11,2019

knowledge stored in Adam’s character system telling us of
what characters that meet or have met Isa Adam is currently
aware can be received.

[0200] Dialogs differ in a way that the speaker is set to the
name of the actor talking. During co-reference resolution we
are additionally matching any usage of personal pronoun
with lemma “I” to the name of the actor. While analyzing
character’s statements, an attempt is made to add gathered
information to the character’s knowledge system. This is
done in order to be able to perform/obtain reasoning regard-
ing a character’s knowledge and compare it to other char-
acters’ knowledge later when asking questions.

[0201] While analyzing actions, how confident an actor is
about what he stated in a dialog can be inferred. This is done
by checking whether the actor is using one of the words
present in a set of confidence words shown in Table 2. Each
word is assigned a specific value in a range from 0 (impos-
sible action) to 1 (sure that an action happened). For
example, a sentence “I think that Wojtek owns the crown”
stated by Adam would result in creating a knowledge byte
containing a belief “Wojtek owns the crown” with confi-
dence 0.4.

[0202] It can be assumed that all sentences provided
directly in script have a confidence equal to 1.

[0203] Moreover, a distinction can be made between
beliefs (normal statements made by an actor in a dialog or
in a script, having a certain confidence) and desires. The
latter are recognized by looking for words such as “want”,
“wish”, “need” in a provided sentence, either in a script or
a dialog. As a result, sentences “Adam eats chocolate” and
“Adam wants to eat chocolate” would create knowledge
bytes with similar components, but the former would be
resolved as Adam’s belief and the latter as Adam’s desire to
eat chocolate.

[0204] For desires, confidence measurements are not as
much of a concern, so the confidence may always be set
equal to 1.

[0205] In order to compare knowledge bytes, it can be
important to determine whether verbs in two compared
knowledge bytes are either synonyms or antonyms or none
of the two. In order to resolve this issue, a WordNet
dictionary can be used. While looking for synonyms, a check
can be performed for all other words belonging to the same
synsets as the query word. While looking for antonyms, the
built-in WordNet antonym lists can be used.

[0206] Rule sheets allow scriptwriters to create rules that
will enable automatic inferencing of information about the
story and characters. Besides this, error definitions can be
provided so that consistency of the story can be ensured. A
scriptwriter is able to check for possible errors at any time
during the creation of the story.

[0207] Rules and errors can be provided in a natural
language and they are automatically translated into a Prolog
language structure. In order to parse rule sheets Token-
sRegex can be used. TokensRegex refers to a framework
included in Stanford CoreNLP for creating regular expres-
sions over (a sequence of) tokens. A check can be performed
for properties assigned to single tokens extracted by Token-
izerAnnotator—lemma, named entity and a part of speech.
Three main patterns for regular expressions can be used,
each of them looking for specific structure of sentences
provided in the rule sheet input field:

[0208] Type pattern
[0209] Inference pattern
[0210] Error pattern

US 2019/0107927 Al

Apr. 11,2019

[0211] Regular expressions used for different patterns are TABLE 2
shown in Table 3 and example sentences with created rules
are shown in Table 4. A name of A subject and/or object can Confidence Words
be typed in all. UPPERCASE.letters to make a general rule Veb Confidence
for every subject and/or object (see inference and error
pattern examples in Table 4). In other cases, a rule for a sure 1.0
specific subject and/or object (see type pattern example in Conlﬁdent é'g
realize .
Table 4) can be created. . know 0.8
[0212] Patterns can be combined. For example, type pat- state 0.5
tern inside inference and error patterns can be combined. say 0.4
Co-references and resolve desires and negations can also be ;h“;k 8'1
. cC. .

combined. Moreover, while creating rule sheets, information suppose 0.2
about location can be included (by including a certain believe 0.2
character and a time when the action specified was per- assume 0.2
formed). An example of such a complex sentence is pre- presume 0.2

d expect 0.1
sented in Table 5.

TABLE 1
TABLE 3
Examples of Parsed Knowledge Bytes
Table 1: Examples of Parsed Knowledge Bytes Regular Expressions for Rule Sheet Patterns

Sentence Knowledge Byte Pattern Regular Expression
Adam cries. belief(0,adam,cry,null, false). Type (?$subject [tag:/NN.*/]+) [lemma:/be/] [tag:/DT.*/]+
Adam does not enjoy going belief(0,adam,enjoy,go,true,to,school,null). (2$type [tag:/NN.*|JT.%/]*)
to school. Inference /if/ (2$condition [!lemma/thenl,/]+) /thenl,/+ (?$result []+)
Adam and Wojtek eat belief(0,adam,eat,chocolate, false). Error /show/ [tag:/DT.*/]* /error/ (?$error []+) /if/ (2$condition

chocolate. sk belief(1,wojtek,eat,chocolate, false).

[+

TABLE 4

Example Sentences for Rule Sheet Patterns

Rule

is young and he drinks a beer.

If SOMEONE buys SOMETHING,

type(adam, human).
belief(Id, SOMEONE, own, SOMETHING, false) :-
“-> belief(Id, SOMEONE, buy, SOMETHING, false).

Show error “Too young” if SOMEONE error(Id1, Id2, *Too young’) :-

> belief(Id1, SOMEONE, be, young, false),
“->belief(Id2, SOMEONE, drink, beer, false).

TABLE 5

Example Complex Sentences while Creating Rule Sheets

Pattern Sentence
Type Adam is a human.
Inference
then he owns it.
Error
Sentence

Rule

If Adam is tired on Sunday, then he does not

go to church.

If Adam does not get a candy, than he becomes

angry

Show error “Bad habits” if Adam wants to eat

chocolate and he is fat.

Show error “Not at school” if Adam is a student
and he is at home from 8 to 15.

Show error “Not wearing helmet” if Adam
sings in space and he does not wear a helmet.

belief(Id, adam, go, null, true, to, church, null) :-
> timeof(Id, sunday),

“-> belief(Id, adam, be, tire, false).
state(Id, adam, angry) :-

“-> belief(Id, adam, get, candy, true).
error(Idl, Id2, "Bad habits’) :-

- desire(Id1, adam, eat, chocolate, false),
“-> belief(Id2, adam, be, fat, false).
error(Idl, Id2, "Not at school’) :-

> type(adam, student),

> timeof(1d2, 8),

timeof(Id2, 15),

> location(Id2, home),

> belief(Id2, adam, be, null, false).
error(Idl, Id2, ‘Not wearing helmet’) :-
“-> location(Id1, space),

“-> belief(Id1, adam, sing, null, false),

> belief(Id2, adam, wear, helmet, true).

US 2019/0107927 Al

[0213] Character sheets contain descriptions and stories of
single characters that have happened before the actual story
has started. They are created while making use of parsing
scheme used in actions. Character sheets allow scriptwriters
to add more background information about a character,
which they may not necessarily use in the script itself.
Moreover, each action is added to the specified actor’s
character system, which allows for information contained in
the character sheet to be used in the character’s reasoning
capabilities as well.

[0214] FIG. 12 illustrates an example computing compo-
nent that may be used to implement various features of the
system and methods disclosed herein, for example, one or
more elements of system 200 and/or 400, a user device in
which frontend application/UI 202 may be implemented,
backend server 210, data library 220, preview device 222,
application launcher 428, AR/VR components 432/434,
NLP core 224, etc.

[0215] As used herein, the term component might describe
a given unit of functionality that can be performed in
accordance with one or more embodiments of the present
application. As used herein, a component might be imple-
mented utilizing any form of hardware, software, or a
combination thereof. For example, one or more processors,
controllers, ASICs, PLLAs, PALs, CPLDs, FPGAs, logical
components, software routines or other mechanisms might
be implemented to make up a component. In implementa-
tion, the various components described herein might be
implemented as discrete components or the functions and
features described can be shared in part or in total among
one or more components. In other words, as would be
apparent to one of ordinary skill in the art after reading this
description, the various features and functionality described
herein may be implemented in any given application and can
be implemented in one or more separate or shared compo-
nents in various combinations and permutations. Even
though various features or elements of functionality may be
individually described or claimed as separate components,
one of ordinary skill in the art will understand that these
features and functionality can be shared among one or more
common software and hardware elements, and such descrip-
tion shall not require or imply that separate hardware or
software components are used to implement such features or
functionality.

[0216] Where components of the application are imple-
mented in whole or in part using software, in one embodi-
ment, these software elements can be implemented to oper-
ate with a computing or processing component capable of
carrying out the functionality described with respect thereto.
One such example computing component is shown in FIG.
12. Various embodiments are described in terms of this
example-computing component 1200. After reading this
description, it will become apparent to a person skilled in the
relevant art how to implement the application using other
computing components or architectures.

[0217] Referring now to FIG. 12, computing component
1200 may represent, for example, computing or processing
capabilities found within a self-adjusting display, desktop,
laptop, notebook, and tablet computers; hand-held comput-
ing devices (tablets, PDA’s, smart phones, cell phones,
palmtops, etc.); workstations or other devices with displays;
servers; or any other type of special-purpose or general-
purpose computing devices as may be desirable or appro-
priate for a given application or environment. Computing

Apr. 11,2019

component 1200 might also represent computing capabili-
ties embedded within or otherwise available to a given
device. For example, a computing component might be
found in other electronic devices such as, for example
navigation systems, portable computing devices, and other
electronic devices that might include some form of process-
ing capability.

[0218] Computing component 1200 might include, for
example, one or more processors, controllers, control com-
ponents, or other processing devices, such as a processor
1204. Processor 1204 might be implemented using a gen-
eral-purpose or special-purpose processing engine such as,
for example, a microprocessor, controller, or other control
logic. In the illustrated example, processor 1204 is con-
nected to a bus 1202, although any communication medium
can be used to facilitate interaction with other components
of computing component 1200 or to communicate exter-
nally.

[0219] Computing component 1200 might also include
one or more memory components, simply referred to herein
as main memory 1208. For example, preferably random
access memory (RAM) or other dynamic memory, might be
used for storing information and instructions to be executed
by processor 1204. Main memory 1208 might also be used
for storing temporary variables or other intermediate infor-
mation during execution of instructions to be executed by
processor 1204. Computing component 1200 might likewise
include a read only memory (“ROM”) or other static storage
device coupled to bus 1202 for storing static information and
instructions for processor 1204.

[0220] The computing component 1200 might also
include one or more various forms of information storage
mechanism 1210, which might include, for example, a
media drive 1212 and a storage unit interface 1220. The
media drive 1212 might include a drive or other mechanism
to support fixed or removable storage media 1214. For
example, a hard disk drive, a solid state drive, a magnetic
tape drive, an optical disk drive, a compact disc (CD) or
digital video disc (DVD) drive (R or RW), or other remov-
able or fixed media drive might be provided. Accordingly,
storage media 1214 might include, for example, a hard disk,
an integrated circuit assembly, magnetic tape, cartridge,
optical disk, a CD or DVD, or other fixed or removable
medium that is read by, written to or accessed by media drive
1212. As these examples illustrate, the storage media 1214
can include a computer usable storage medium having
stored therein computer software or data.

[0221] In alternative embodiments, information storage
mechanism 1210 might include other similar instrumentali-
ties for allowing computer programs or other instructions or
data to be loaded into computing component 1200. Such
instrumentalities might include, for example, a fixed or
removable storage unit 1222 and an interface 1220.
Examples of such storage units 1222 and interfaces 1220 can
include a program cartridge and cartridge interface, a remov-
able memory (for example, a flash memory or other remov-
able memory component) and memory slot, a PCMCIA slot
and card, and other fixed or removable storage units 1222
and interfaces 1220 that allow software and data to be
transferred from the storage unit 1222 to computing com-
ponent 1200.

[0222] Computing component 1200 might also include a
communications interface 1224. Communications interface
1224 might be used to allow software and data to be

US 2019/0107927 Al

transferred between computing component 1200 and exter-
nal devices. Examples of communications interface 1224
might include a modem or softmodem, a network interface
(such as an Ethernet, network interface card, WiMedia,
IEEE 802.XX or other interface), a communications port
(such as for example, a USB port, IR port, RS232 port
Bluetooth® interface, or other port), or other communica-
tions interface. Software and data transferred via commu-
nications interface 1224 might typically be carried on sig-
nals, which can be electronic, electromagnetic (which
includes optical) or other signals capable of being
exchanged by a given communications interface 1224.
These signals might be provided to communications inter-
face 1224 via a channel 1228. This channel 1228 might carry
signals and might be implemented using a wired or wireless
communication medium. Some examples of a channel might
include a phone line, a cellular link, an RF link, an optical
link, a network interface, a local or wide area network, and
other wired or wireless communications channels.

[0223] In this document, the terms “computer program
medium” and “computer usable medium” are used to gen-
erally refer to transitory or non-transitory media such as, for
example, memory 1208, storage unit 1220, media 1214, and
channel 1228. These and other various forms of computer
program media or computer usable media may be involved
in carrying one or more sequences of one or more instruc-
tions to a processing device for execution. Such instructions
embodied on the medium, are generally referred to as
“computer program code” or a “computer program product”
(which may be grouped in the form of computer programs
or other groupings). When executed, such instructions might
enable the computing component 1200 to perform features
or functions of the present application as discussed herein.

[0224] Although described above in terms of various
exemplary embodiments and implementations, it should be
understood that the various features, aspects and function-
ality described in one or more of the individual embodi-
ments are not limited in their applicability to the particular
embodiment with which they are described, but instead can
be applied, alone or in various combinations, to one or more
of the other embodiments of the application, whether or not
such embodiments are described and whether or not such
features are presented as being a part of a described embodi-
ment. Thus, the breadth and scope of the present application
should not be limited by any of the above-described exem-
plary embodiments.

[0225] Terms and phrases used in this document, and
variations thereof, unless otherwise expressly stated, should
be construed as open ended as opposed to limiting. As
examples of the foregoing: the term “including” should be
read as meaning “including, without limitation” or the like;
the term “example” is used to provide exemplary instances
of the item in discussion, not an exhaustive or limiting list
thereof; the terms “a” or “an” should be read as meaning “at
least one,” “one or more” or the like; and adjectives such as
“conventional,” “traditional,” “‘normal,” “standard,”
“known” and terms of similar meaning should not be
construed as limiting the item described to a given time
period or to an item available as of a given time, but instead
should be read to encompass conventional, traditional, nor-
mal, or standard technologies that may be available or
known now or at any time in the future. Likewise, where this
document refers to technologies that would be apparent or
known to one of ordinary skill in the art, such technologies

Apr. 11,2019

encompass those apparent or known to the skilled artisan
now or at any time in the future.

[0226] The presence of broadening words and phrases
such as “one or more,” “at least,” “but not limited to” or
other like phrases in some instances shall not be read to
mean that the narrower case is intended or required in
instances where such broadening phrases may be absent.
The use of the term “component” does not imply that the
components or functionality described or claimed as part of
the component are all configured in a common package.
Indeed, any or all of the various components of a compo-
nent, whether control logic or other components, can be
combined in a single package or separately maintained and
can further be distributed in multiple groupings or packages
or across multiple locations.

[0227] Additionally, the various embodiments set forth
herein are described in terms of exemplary block diagrams,
flow charts and other illustrations. As will become apparent
to one of ordinary skill in the art after reading this document,
the illustrated embodiments and their various alternatives
can be implemented without confinement to the illustrated
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a
particular architecture or configuration.

What is claimed is:
1. A computer-implemented method, comprising:

presenting a visual representation of the script based on
one or more elements of a script;

presenting a visual representation of an updated script
based on one or more updates to the one or more
elements of the script;

generating a visual representation of one or more char-
acters’ evolution in the script or updated script;

generating and updating, in real-time, a storyboard, based
on the script or updated script, respectively, the story-
board including the visual representation of the one or
more characters’ evolution; and

generating at least one of a two-dimensional (2D), three-
dimensional (3D), and camera-view preview of the
script or updated script.

2. The computer-implemented method of claim 1, further
comprising presenting a user interface receiving user input
regarding at least an addition or modification of one or more
scene elements of the script or updated script.

3. The computer-implemented method of claim 2,
wherein each of the one or more scene elements corresponds
to a location, dialog of the one or more characters, a
transition, and an action.

4. The computer-implemented method of claim 3, further
comprising receiving, via the user interface, user input
regarding a camera-shot option associated with the one or
more scene elements corresponding to a location, dialog of
the one or more characters, and an action.

5. The computer-implemented method of claim 2, further
comprising recording, through the user interface, a sound-
track commensurate with the dialog of the one or more
characters.

6. The computer-implemented method claim 1, wherein
the generating and updating of the storyboard comprises
creating a storyboard frame based on each of the one or more
scene elements.

US 2019/0107927 Al

7. The computer-implemented method of claim 1,
wherein the visual representation of the one or more char-
acters’ evolution in the script or updated script comprises a
2D timeline view.

8. The computer-implemented method of claim 7,
wherein the 2D timeline view comprises at least two axes,
a first of the at least two axes representing the one or more
characters, and a second of the at least two axes representing
a temporal aspect of the script or updated script.

9. The computer-implemented method of claim 8,
wherein each of the one or more characters are represented
by a timeline along the first of the at least two axes, and
wherein interaction between at least two of the one or more
characters is visualized by a meeting of each timeline
representative of the at least two of the one or more
characters.

10. The computer-implemented method of claim 1, fur-
ther comprising presenting one or more representations of
one or more cameras, wherein use of the one or more
cameras relative to the one or more characters spatially and
temporally is reflected.

11. The computer-implemented method of claim 1,
wherein the presentation of the 2D preview of the 3D
preview comprises presenting a 2D map or a 3D map
including one or more elements represented within the script
or updated script, and a spatial representation of the one or
more elements set forth within the script or updated script.

12. The computer-implemented method of claim 1, fur-
ther comprising correlating one or more images associated
with camera shots to the one or more elements of the script
or updated script to generate or update the storyboard.

13. The computer-implemented method of claim 1, fur-
ther comprising generating a heating map in conjunction
with at least one of the 2D preview of the 3D preview.

14. The computer-implemented method of claim 1,
wherein the heating map represents a relationship between
two or more scene elements of the script or updated script.

15. A system, comprising:

at least one of natural language processor and an analytics

engine extracting metadata from a script or an updated
script; and

Apr. 11,2019

a visualization engine:

presenting a visual representation of the script based on
the metadata, the metadata being representative of
one or more elements of a script;

presenting a visual representation of an updated script
based on one or more updates to the one or more
elements of the script;

generating a visual representation of one or more
characters’ evolution in the script or updated script;

generating and updating, in real-time, a storyboard,
based on the script or updated script, respectively,
the storyboard including the visual representation of
the one or more characters’ evolution; and

generating at least one of a two-dimensional (2D),
three-dimensional (3D), and camera-view preview
of the script or updated script.

16. The system of claim 15, wherein the at least one of the
natural language processor and the analytics engine gener-
ates a knowledge base comprising information inferred from
the metadata, and at least one of rules metadata and user
queries regarding the script or updated script.

17. The system of claim 15, wherein the system further
comprises a user interface receiving user input regarding at
least an addition or modification of one or more scene
elements of the script or updated script, each of the one or
more scene elements corresponding to a location, dialog of
the one or more characters, a transition, and an action.

18. The system of claim 17, wherein the visualization
engine generates and updates the storyboard by creating a
storyboard frame based on each of the one or more scene
elements.

19. The system of claim 15, wherein the visualization
engine represents the one or more characters’ evolution in
the script or updated script with a 2D timeline view.

20. The system of claim 19, wherein the 2D timeline view
comprises at least two axes, a first of the at least two axes
representing the one or more characters, and a second of the
at least two axes representing a temporal aspect of the script
or updated script.

